
GPU Optimization

Fundamentals

Cliff Woolley

Developer Technology Engineer

© NVIDIA 2013

Note: Fundamentals will apply broadly

Example performance numbers are presented for Tesla K20X,

which is based on the Kepler GK110 GPU

Same general optimization concepts apply to other GPUs, though

some parameters may be different, e.g.:

Number of SMs per GPU

Number of functional units per SM

Maximum number of concurrent warps per SM

Shared memory size per SM

Register file size per SM

Developer tools from NVIDIA help you analyze the concepts

without having to memorize parameters of each architecture

© NVIDIA 2013

GPU OPTIMIZATION FUNDAMENTALS

© NVIDIA 2013

Main Requirements for GPU Performance

Expose sufficient parallelism

Utilize parallel execution resources efficiently

Use memory system efficiently

Coalesce global memory accesses

Use shared memory where possible

Have coherent execution within warps of threads

© NVIDIA 2013

APOD: A Systematic Path to Performance

Assess

Parallelize

Optimize

Deploy

© NVIDIA 2013

Identify hotspots (total time, number of calls)

Understand scaling (strong and weak)

Assess

HOTSPOTS

© NVIDIA 2013

Parallelize

Applications

Libraries
Programming

Languages
Compiler

Directives

© NVIDIA 2013

Optimize

Profile-driven optimization

Tools:

nsight Visual Studio Edition or Eclipse Edition

nvvp NVIDIA Visual Profiler

nvprof Command-line profiling

© NVIDIA 2013

Deploy

Check API return values

Run cuda-memcheck tools

Library distribution

Cluster management

Early gains

Subsequent changes are evolutionary

Productize

© NVIDIA 2013

ASSESS

© NVIDIA 2013

Profile the code, find the hotspot(s)

Focus your attention where it will give the most benefit

Assess

© NVIDIA 2013

Assess

We’ve found a hotspot to work on!

What percent of our total time does this represent?

How much can we improve it? What is the “speed of light”?

How much will this improve our overall performance?

© NVIDIA 2013

Assess

Let’s investigate…

Strong scaling and Amdahl’s Law

Weak scaling and Gustafson’s Law

Expected perf limiters: Bandwidth? Computation? Latency?

© NVIDIA 2013

Assess: Understanding Scaling

Strong Scaling

A measure of how, for fixed overall problem size, the time to

solution decreases as more processors are added to a system

Linear strong scaling: speedup achieved is equal to number of

processors used

Amdahl’s Law:

𝑺 =
𝟏

𝟏 − 𝑷 +
𝑷
𝑵

 ≈
𝟏

(𝟏 − 𝑷)

© NVIDIA 2013

Assess: Understanding Scaling

Weak Scaling

A measure of how time to solution changes as more processors

are added with fixed problem size per processor

Linear weak scaling: overall problem size increases as num. of

processors increases, but execution time remains constant

Gustafson’s Law:

𝑺 = 𝑵 + (𝟏 − 𝑷)(𝟏 − 𝑵)

© NVIDIA 2013

Assess: Applying Strong and Weak Scaling

Understanding which type of scaling is most applicable is an

important part of estimating speedup:

Sometimes problem size will remain constant

Other times problem size will grow to fill the available processors

Apply either Amdahl's or Gustafson's Law to determine an upper

bound for the speedup

© NVIDIA 2013

Assess: Applying Strong Scaling

Recall that in this case we are wanting to optimize an

existing kernel with a pre-determined workload

That’s strong scaling, so Amdahl’s Law will determine

the maximum speedup

~93%

© NVIDIA 2013

Assess: Applying Strong Scaling

Say, for example, our kernel is ~93% of total time:

Speedup 𝑺 =
𝟏

𝟏−𝑷 +
𝑷

𝑺
𝑷

 (SP = speedup in parallel part)

In the limit when 𝑺𝑷 is huge, 𝑺 will approach
𝟏

𝟏−𝟎.𝟗𝟑
≈ 𝟏𝟒. 𝟑

In practice, it will be less than that depending on the 𝑺𝑷 achieved

Getting 𝑺𝑷 to be high is the goal of optimizing, of course

~93%

© NVIDIA 2013

Assess: Speed of Light

What’s the limiting factor?

Memory bandwidth?

Compute throughput?

Latency?

Not sure?

Get a rough estimate by counting bytes per instruction,

compare it to “balanced” peak ratio
𝑮𝑩𝒚𝒕𝒆𝒔/𝒔𝒆𝒄

 𝑮𝒊𝒏𝒔𝒏𝒔/𝒔𝒆𝒄

Profiler will help you determine this

© NVIDIA 2013

Assess: Limiting Factor

Comparing bytes per instr. will give you a guess as to whether

you’re likely to be bandwidth-bound or instruction-bound

Comparing actual achieved GB/s vs. theory and achieved

Ginstr/s vs. theory will give you an idea of how well you’re doing

If both are low, then you’re probably latency-bound and need to expose

more (concurrent) parallelism

© NVIDIA 2013

Assess: Limiting Factor

© NVIDIA 2013

Assess: Speed of Light

What’s the limiting factor?

Memory bandwidth? Compute throughput? Latency?

Consider SpMV: intuitively expect it to be bandwidth-limited

Say we discover we’re getting only ~38% of peak bandwidth

If we aim to get this up to ~65% of peak, that’s 1.7 for this kernel

1.7 for this kernel translates into 1.6 overall due to Amdahl:

 𝐒 =
𝟏

𝟏−𝟎.𝟗𝟑 +
𝟎.𝟗𝟑

𝟏.𝟕

≈ 𝟏. 𝟔

~93%

© NVIDIA 2013

Assess: Limiting Factor

For our example SpMV kernel, our first discovery was that we’re

latency-limited, not bandwidth, since utilization was so low

This tells us our first “optimization” step actually needs to be

related how we expose (memory-level) parallelism

~93%

© NVIDIA 2013

PARALLELIZE

© NVIDIA 2013

PARALLELIZE

Computation

© NVIDIA 2013

Parallelize

Applications

Libraries
Programming

Languages
Compiler

Directives

Pick the best tool for the job

© NVIDIA 2013

NVIDIA cuFFT NVIDIA cuSPARSE NVIDIA cuBLAS

NVIDIA cuRAND

NVIDIA NPP

Vector Signal
Image Processing

Matrix Algebra on
GPU and Multicore

C++ Templated
Parallel Algorithms IMSL Library

GPU Accelerated
Linear Algebra

Building-block
Algorithms CenterSpace NMath

Parallelize: e.g., with GPU Accelerated Libraries

http://code.google.com/p/thrust/downloads/list

© NVIDIA 2013

// generate 32M random numbers on host
thrust::host_vector<int> h_vec(32 << 20);
thrust::generate(h_vec.begin(),
 h_vec.end(),
 rand);

// transfer data to device (GPU)
thrust::device_vector<int> d_vec = h_vec;

// sort data on device
thrust::sort(d_vec.begin(), d_vec.end());

// transfer data back to host
thrust::copy(d_vec.begin(),
 d_vec.end(),
 h_vec.begin());

Parallelize: e.g., with Thrust

Similar to C++ STL

High-level interface

Enhances developer productivity

Enables performance portability
between GPUs and multicore CPUs

Flexible

Backends for CUDA, OpenMP, TBB

Extensible and customizable

Integrates with existing software

Open source

thrust.github.com or developer.nvidia.com/thrust

© NVIDIA 2013

Parallelize: e.g., with OpenACC

Program myscience

 ... serial code ...

!$acc kernels

 do k = 1,n1

 do i = 1,n2

 ... parallel code ...

 enddo

 enddo

!$acc end kernels

 ...

End Program myscience

CPU GPU

Your original

Fortran or C code

Directives-based approach

Compiler parallelizes code

Works on many-core GPUs &

multicore CPUs

OpenACC

Compiler

Directive

www.nvidia.com/gpudirectives

© NVIDIA 2013

void saxpy_serial(int n,

 float a,

 float *x,

 float *y)

{

 for (int i = 0; i < n; ++i)

 y[i] = a*x[i] + y[i];

}

// Perform SAXPY on 1M elements

saxpy_serial(4096*256, 2.0, x, y);

__global__

void saxpy_parallel(int n,

 float a,

 float *x,

 float *y)

{

 int i = blockIdx.x * blockDim.x +

 threadIdx.x;

 if (i < n) y[i] = a*x[i] + y[i];

}

// Perform SAXPY on 1M elements

saxpy_parallel<<<4096,256>>>(n,2.0,x,y);

Parallelize: e.g., with CUDA C

Standard C Code CUDA C Code

developer.nvidia.com/cuda-toolkit

© NVIDIA 2013

Parallelism Needed

GPU is a parallel machine

Lots of arithmetic pipelines

Multiple memory banks

To get good performance, your code must expose sufficient

parallelism for 2 reasons:

To actually give work to all the pipelines

To hide latency of the pipelines

Rough rule of thumb for Tesla K20X:

You want to have 14K or more threads running concurrently

© NVIDIA 2013

void transpose(float in[][], float out[][], int N)

{

 for(int j=0; j < N; j++)

 for(int i=0; i < N; i++)

 out[j][i] = in[i][j];

}

Case Study: Matrix Transpose

i

j

© NVIDIA 2013

+ Quickly implemented - Performance weak

Need to expose parallelism!

An Initial CUDA Version

__global__ void transpose(float in[], float out[], int N)

{

 for(int j=0; j < N; j++)

 for(int i=0; i < N; i++)

 out[i*N+j] = in[j*N+i];

}

float in[N*N], out[N*N];

…

transpose<<<1,1>>>(in, out, N);

© NVIDIA 2013

+ Quickly implemented - Performance weak

Need to expose parallelism!

An Initial CUDA Version

__global__ void transpose(float in[], float out[], int N)

{

 for(int j=0; j < N; j++)

 for(int i=0; i < N; i++)

 out[i*N+j] = in[j*N+i];

}

float in[N*N], out[N*N];

…

transpose<<<1,1>>>(in, out, N);

© NVIDIA 2013

Parallelize across matrix elements

tid

in

tid tid

tid out

tid

tid

__global__ transpose(float in[], float out[])

{

 int tid = threadIdx.x;

 int bid = blockIdx.x;

 out[tid*N+bid] = in[bid*N+tid];

}

float in[], out[];

…

transpose<<<N,N>>>(in, out);

Process elements independently
bid
bid

bid bid

© NVIDIA 2013

PARALLELIZE

Data Transfer

© NVIDIA 2013

Heterogeneous system: overlap work and data movement

Asynchronicity = Overlap = Parallelism

DMA

DMA

© NVIDIA 2013

This is the kind of case we would be concerned about

Found the top kernel, but the GPU is mostly idle – that is our bottleneck

Need to overlap CPU/GPU computation and PCIe transfers

Asynchronicity

© NVIDIA 2013

What we want to see is maximum overlap of all engines

Parallelize: Achieve Asynchronicity

© NVIDIA 2013

OPTIMIZE

© NVIDIA 2013

Main Requirements for GPU Performance

Expose sufficient parallelism

Utilize parallel execution resources efficiently

Use memory system efficiently

Coalesce global memory accesses

Use shared memory where possible

Have coherent execution within warps of threads

© NVIDIA 2013

GPU Optimization Fundamentals

Find ways to parallelize sequential code

Adjust kernel launch configuration to maximize device utilization

Ensure global memory accesses are coalesced

Minimize redundant accesses to global memory

Avoid different execution paths within the same warp

Minimize data transfers between the host and the device

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/

© NVIDIA 2013

GPU Optimization Fundamentals

Find ways to parallelize sequential code

Kernel optimizations

Launch configuration

Global memory throughput

Shared memory access

Instruction throughput / control flow

Optimization of CPU-GPU interaction

Maximizing PCIe throughput

Overlapping kernel execution with memory copies

© NVIDIA 2013

OPTIMIZE

Kernel Optimizations: Kernel Launch Configuration

© NVIDIA 2013

Kernel Launch Configuration

A kernel is a function that runs on the GPU

A kernel is launched as a grid of blocks of threads

Launch configuration is the number of blocks and number of

threads per block, expressed in CUDA with the <<< >>> notation:

mykernel<<<blocks_per_grid,threads_per_block>>>(…);

What values should we pick for these?

Need enough total threads to process entire input

Need enough threads to keep the GPU busy

Selection of block size is an optimization step involving warp occupancy

© NVIDIA 2013

High-level view of GPU Architecture

Several Streaming Multiprocessors

E.g., Kepler GK110 has up to 15 SMs

L2 Cache shared among SMs

Multiple channels to DRAM

Kepler GK110

© NVIDIA 2013

Kepler Streaming Multiprocessor (SMX)

Per SMX:
192 SP CUDA Cores

64 DP CUDA Cores

4 warp schedulers

Up to 2048 concurrent threads

One or two instructions issued

per scheduler per clock from a

single warp

Register file (256KB)

Shared memory (48KB)

© NVIDIA 2013

CUDA Execution Model

Thread: Sequential execution unit

All threads execute same sequential program

Threads execute in parallel

Threads Block: a group of threads

Executes on a single Streaming Multiprocessor (SM)

Threads within a block can cooperate

Light-weight synchronization

Data exchange

Grid: a collection of thread blocks

Thread blocks of a grid execute across multiple SMs

Thread blocks do not synchronize with each other

Communication between blocks is expensive

© NVIDIA 2013

Software Hardware

Threads are executed by scalar CUDA Cores

Thread

CUDA

Core

Thread Block Multiprocessor

Thread blocks are executed on multiprocessors

Thread blocks do not migrate

Several concurrent thread blocks can reside on

one multiprocessor - limited by multiprocessor

resources (shared memory and register file)

Grid

A kernel is launched as a grid of thread blocks

Execution Model

Device

© NVIDIA 2013

Launch Configuration: General Guidelines

How many blocks should we use?

1,000 or more thread blocks is best

Rule of thumb: enough blocks to fill the GPU at least 10s of times over

Makes your code ready for several generations of future GPUs

© NVIDIA 2013

Launch Configuration: General Guidelines

How many threads per block should we choose?

The really short answer: 128, 256, or 512 are often good choices

The slightly longer answer:

Pick a size that suits the problem well

Multiples of 32 threads are best

Pick a number of threads per block (and a number of blocks) that is

sufficient to keep the SM busy

© NVIDIA 2013

Multiprocessor

32 Threads

Warps

A thread block consists

of warps of 32 threads

A warp is executed

physically in parallel on

some multiprocessor.

Threads of a warp issue

instructions in lock-

step (as with SIMD)

=

Warps

Thread Block

32 Threads

32 Threads

32 Threads

© NVIDIA 2013

Hardware Levels of Parallelism

SIMD MPI

Single Instruction, Multiple Data

In-core parallelism

SMT

Simultaneous Multithreading

Cross-core, Cross-socket

Single Computer

OpenMP, pthreads

Multiple “computers”

Tightly-coupled

Supercomputing apps

SIMT

Single Instruction, Multiple Threads

In-processor parallelism

Many threads on many cores

These form a continuum. Best performance is achieved with a mix.

© NVIDIA 2013

Low Latency or High Throughput?

CPU

Optimized for low-latency

access to cached data sets

Control logic for out-of-order

and speculative execution

GPU

Optimized for data-parallel,

throughput computation

Architecture tolerant of

memory latency

More transistors dedicated to

computation

© NVIDIA 2013

Occupancy

Need enough concurrent warps

per SM to hide latencies:

Instruction latencies

Memory access latencies

Hardware resources determine

number of warps that fit per SM

Occupancy = Nactual / Nmax

© NVIDIA 2013

Low Latency or High Throughput?

CPU architecture must minimize latency within each thread

GPU architecture hides latency with computation from other (warps of) threads

GPU Streaming Multiprocessor – High-throughput Processor

CPU core – Low-latency Processor

Computation Thread/Warp

Tn

Processing

Waiting for data

Ready to be processed

Context switch

W1

W2

W3

W4

T1

T2

T3

T4

© NVIDIA 2013

Latency Hiding

Instruction latencies:

Roughly 10-20 cycles for arithmetic operations

DRAM accesses have higher latencies (400-800 cycles)

Instruction Level Parallelism (ILP)

Independent instructions between two dependent ones

ILP depends on the code, done by the compiler

Switching to a different warp

If a warp must stall for N cycles due to dependencies, having N other

warps with eligible instructions keeps the SM going

Switching among concurrently resident warps has no overhead

State (registers, shared memory) is partitioned, not stored/restored

 FFMA R0, R43, R0, R4;

 FFMA R1, R43, R4, R5;

 FMUL R7, R9, R0;

 FMUL R8, R9, R1;

 ST.E [R2], R7;

ILP=2

© NVIDIA 2013

Occupancy

Occupancy: number of concurrent warps per SM, expressed as:

Absolute number of warps of threads that fit concurrently (e.g., 1..64), or

Ratio of warps that fit concurrently to architectural maximum (0..100%)

Number of warps that fit determined by resource availability:

Threads per thread block

Registers per thread

Shared memory per thread block Kepler SM resources:

– 64K 32-bit registers

– Up to 48 KB of shared memory

– Up to 2048 concurrent threads

– Up to 16 concurrent thread blocks

© NVIDIA 2013

Occupancy and Performance

Note that 100% occupancy isn’t needed to reach maximum

performance

Once the “needed” occupancy (enough warps to switch among to cover

latencies) is reached, further increases won’t improve performance

Level of occupancy needed depends on the code

More independent work per thread -> less occupancy is needed

Memory-bound codes tend to need more occupancy

Higher latency than for arithmetic, need more work to hide it

© NVIDIA 2013

Thread Block Size and Occupancy

Thread block size is a multiple of warp size (32)

Even if you request fewer threads, hardware rounds up

Thread blocks can be too small

Kepler SM can run up to 16 thread blocks concurrently

SM can reach the block count limit before reaching good occupancy

E.g.: 1-warp blocks = 16 warps/SM on Kepler (25% occ – probably not enough)

Thread blocks can be too big

Enough SM resources for more threads, but not enough for a whole block

A thread block isn’t started until resources are available for all of its threads

© NVIDIA 2013

Thread Block Sizing

SM resources:

Registers

Shared memory

Number of warps allowed by SM resources
Too few

threads per block

Too many

threads per block

© NVIDIA 2013

CUDA Occupancy Calculator

Analyze effect of

resource consumption

on occupancy

© NVIDIA 2013

Occupancy Analysis in NVIDIA Visual Profiler

Occupancy here is limited

by grid size and number of

threads per block

© NVIDIA 2013

OPTIMIZE

Kernel Optimizations: Global Memory Throughput

© NVIDIA 2013

Host

CPU

Chipset

DRAM

Device

DRAM

Global

Constant

Texture

Local

GPU

Multiprocessor

Registers

Shared Memory

Multiprocessor

Registers

Shared Memory

Multiprocessor

Registers

Shared Memory

Constant and Texture

Caches

L1 / L2 Cache

CUDA Memory Architecture

© NVIDIA 2013

Optimizing Memory Throughput

Goal: utilize all available memory

bandwidth

Little’s Law:

bytes in flight = latency * bandwidth

 Increase parallelism (bytes in flight)

 (or)

 Reduce latency (time between requests)

A
c
c
e
s
s
 l
a
te

n
c
y

L

© NVIDIA 2013

Illustration: Little’s Law for Escalators

Say the parameters of our escalator are:

1 person fits on each step

Step arrives every 2 secs (bandwidth=0.5 persons/s)

20 steps tall (latency=40 seconds)

1 person in flight: 0.025 persons/s achieved

To saturate bandwidth:

Need 1 person arriving every 2 s

Means we’ll need 20 persons in flight

The idea: Bandwidth × Latency

It takes latency time units for the first person to arrive

We need bandwidth persons to get on the escalator every time unit

© NVIDIA 2013

Memory-Level Parallelism = Bandwidth

In order to saturate memory bandwidth, SM must have

enough independent memory requests in flight concurrently

© NVIDIA 2013

Memory-Level Parallelism: Requests in flight

Achieved Kepler memory throughput

Shown as a function of number of concurrent requests

per SM with 128-byte lines

© NVIDIA 2013

Experiment: vary size of accesses by

threads of a warp, check performance
Memcopy kernel: each warp has 2 concurrent

requests (one write and the read following it)

Accesses by a warp:

 4B words: 1 line

 8B words: 2 lines

 16B words: 4 lines

To achieve same

throughput at lower

occupancy or with

smaller words, need

more independent

requests per warp

Requests per Thread and Performance

© NVIDIA 2013

Optimizing Access Concurrency

Ways to increase concurrent accesses:

Increase occupancy (run more warps concurrently)

Adjust block dimensions to maximize occupancy

If occupancy is limited by registers per thread, try to reduce register count

(-maxrregcount option or __launch_bounds__)

Modify code to process several elements per thread

Doubling elements per thread doubles independent accesses per thread

© NVIDIA 2013

OPTIMIZE

Kernel Optimizations: Global Memory Access Coalescing

© NVIDIA 2013

Mechanics of a Memory Access

Memory operations are issued per warp

Just like all other instructions

Operation:

Threads in a warp provide memory addresses

Hardware determines which lines/segments are needed, fetches them

© NVIDIA 2013

Memory Access Efficiency Analysis

Two perspectives on the throughput:

Application’s point of view: count only bytes requested by application

HW point of view: count all bytes moved by hardware

The two views can be different:

Memory is accessed at 32 byte granularity

With a scattered or offset pattern, the application doesn’t use all the bytes the

hardware actually transferred

Broadcast: the same small transaction serves many threads in a warp

© NVIDIA 2013

Access Patterns vs. Memory Throughput

Scenario:
Warp requests 32 aligned, consecutive 4-byte words

Addresses fall within 4 segments
Warp needs 128 bytes

128 bytes move across the bus

Bus utilization: 100%

...
addresses from a warp

96 192 128 160 224 288 256 32 64 352 320 384 448 416
Memory addresses

0

© NVIDIA 2013

Access Patterns vs. Memory Throughput

...
addresses from a warp

Scenario:
Warp requests 32 aligned, permuted 4-byte words

Addresses fall within 4 segments
Warp needs 128 bytes

128 bytes move across the bus

Bus utilization: 100%

96 192 128 160 224 288 256 32 64 352 320 384 448 416
Memory addresses

0

© NVIDIA 2013

Access Patterns vs. Memory Throughput

Scenario:
Warp requests 32 misaligned, consecutive 4-byte words

Addresses fall within at most 5 segments
Warp needs 128 bytes

At most 160 bytes move across the bus

Bus utilization: at least 80%

Some misaligned patterns will fall within 4 segments, so 100% utilization

96 192 128 160 224 288 256 32 64 352 320 384 448 416
Memory addresses

0

...
addresses from a warp

© NVIDIA 2013

Access Patterns vs. Memory Throughput

addresses from a warp

Scenario:
All threads in a warp request the same 4-byte word

Addresses fall within a single segment
Warp needs 4 bytes

32 bytes move across the bus

Bus utilization: 12.5%

...

96 192 128 160 224 288 256 32 64 352 320 384 448 416
Memory addresses

0

© NVIDIA 2013

Access Patterns vs. Memory Throughput

addresses from a warp

96 192 128 160 224 288 256 32 64 352 320 384 448 416
Memory addresses

0

Scenario:
Warp requests 32 scattered 4-byte words

Addresses fall within N segments
Warp needs 128 bytes

N*32 bytes move across the bus

Bus utilization: 128 / (N*32)

...

© NVIDIA 2013

Parallelizing SAXPY

void saxpy(int n, float a, float * x, float

* y)

{

 for(int i=0; i<n; i++)

 {

 y[base +i] += a * x[base+ i];

 }

}

Divide the work equally

among T threads

Each thread is responsible for

computing one contiguous

‘region’ of the arrays

This is good for pthreads

© NVIDIA 2013

Parallelizing SAXPY

__global__ void saxpy1(int n, float a, float

* x, float * y)

{

 int workPerThread = 1 + n/blockDim.x;

 int base = threadIdx.x * workPerThread;

 for(int i=0; i<workPerThread; i++)

 {

 if(base + i < n)

 {

 y[base +i] += a * x[base+ i];

 }

 }

}

Divide the work equally

among T threads

Each thread is responsible for

computing one contiguous

‘region’ of the arrays

This is good for pthreads

thread 0 thread 1 thread 2 thread 3 … thread 31

x

© NVIDIA 2013

Parallelizing SAXPY

__global__ void saxpy1(int n, float a, float

* x, float * y)

{

 int workPerThread = 1 + n/blockDim.x;

 int base = threadIdx.x * workPerThread;

 for(int i=0; i<workPerThread; i++)

 {

 if(base + i < n)

 {

 y[base +i] += a * x[base+i];

 }

 }

}

In SIMT, 32 threads of a warp

issue the x[base+i] instruction

simultaneously.

Each thread has different value

of base

if workPerThread > 1, this

becomes a strided load

thread 0 thread 1 thread 2 thread 3 … thread 31

x

© NVIDIA 2013

Parallelizing SAXPY

__global__ void saxpy1(int n, float a, float

* x, float * y)

{

 int workPerThread = 1 + n/blockDim.x;

 int base = threadIdx.x * workPerThread;

 for(int i=0; i<workPerThread; i++)

 {

 if(base + i < n)

 {

 y[base +i] += a * x[base+i];

 }

 }

}

In SIMT, 32 threads of a warp

issue the x[base+i] instruction

simultaneously.

Each thread has different value

of base

if workPerThread > 1, this

becomes a strided load

thread 0 thread 1 thread 2 thread 3 … thread 31

x

© NVIDIA 2013

…

A Better Way to Parallelize SAXPY

Divide work up so that each

pass through the loop, the

thread block computes one

‘contiguous region’ of the

array.

Achieves memory coalescing

loopcount = 0 loopcount = 1 …

x

loopcount=k

__global__ void saxpy2(int n, float a, float

* x, float * y)

{

 int id;

 int loopCount = 0;

 while(id < n)

 {

 id = loopCount*blockDim.x + threadIdx.x;

 y[id] += a * x[id];

 loopCount++;

 }

}

© NVIDIA 2013

__global__ void saxpy2(int n, float a, float

* x, float * y)

{

 int id;

 int loopCount = 0;

 while(id < n)

 {

 id = loopCount*blockDim.x + threadIdx.x;

 y[id] += a * x[id];

 loopCount++;

 }

}

The area of X addressed by

each warp is contiguous in

global memory.

The number of global memory

transactions is minimized.

This effect translates to loads

and stores of y also.

loopcount = 0 loopcount = 1 …

… x

A Better Way to Parallelize SAXPY

loopcount=k

© NVIDIA 2013

Structures of Non-Native Size

Say we are reading a 12-byte structure per thread

struct Position

{

 float x, y, z;

};

...

__global__ void kernel(Position *data, ...)

{

 int idx = blockIdx.x * blockDim.x + threadIdx.x;

 Position temp = data[idx];

 ...

}

© NVIDIA 2013

Structure of Non-Native Size

Compiler converts temp = data[idx] into 3 loads:

Each loads 4 bytes

Can’t do an 8 and a 4 byte load: 12 bytes per element means that every

other element wouldn’t align the 8-byte load on 8-byte boundary

Addresses per warp for each of the loads:

Successive threads read 4 bytes at 12-byte stride

© NVIDIA 2013

First Load Instruction

4 8 12 16 20 56 60 64 0 24 48 52 36 40 44 28 32

addresses from a warp

...

© NVIDIA 2013

Second Load Instruction

4 8 12 16 20 56 60 64 0 24 48 52 36 40 44 28 32

addresses from a warp

...

© NVIDIA 2013

Third Load Instruction

4 8 12 16 20 56 60 64 0 24 48 52 36 40 44 28 32

addresses from a warp

...

© NVIDIA 2013

Performance and Solutions

Because of the address pattern, we end up moving 3x more bytes

than application requests

We waste a lot of bandwidth, leaving performance on the table

Potential solutions:

Change data layout from array of structures to structure of arrays

In this case: 3 separate arrays of floats

The most reliable approach (also ideal for both CPUs and GPUs)

Use loads via read-only cache

As long as lines survive in the cache, performance will be nearly optimal

Stage loads via shared memory

© NVIDIA 2013

Global Memory Access Patterns

SoA vs AoS:

Good: point.x[i]

Not so good: point[i].x

Strided array access:

~OK: x[i] = a[i+1] – a[i]

Slower: x[i] = a[64*i] – a[i]

Random array access:

Slower: a[rand(i)]

0 1 31

0 1 31

© NVIDIA 2013

Summary: GMEM Optimization

Strive for perfect address coalescing per warp

Align starting address (may require padding)

A warp will ideally access within a contiguous region

Avoid scattered address patterns or patterns with large strides between

threads

Analyze and optimize address patterns:

Use profiling tools (included with CUDA toolkit download)

Compare the transactions per request to the ideal ratio

Choose appropriate data layout (prefer SoA)

If needed, try read-only loads, staging accesses via SMEM

© NVIDIA 2013

A note about caches

L1 and L2 caches

Ignore in software design

Thousands of concurrent

threads – cache blocking

difficult at best

Read-only Data Cache

Shared with texture pipeline

Useful for uncoalesced reads

Handled by compiler when

const __restrict__ is used, or

use __ldg() primitive

© NVIDIA 2013

Blocking for GPU Memory Caches

Short answer: DON’T

GPU caches are not intended for the same use as CPU caches

Smaller size (especially per thread), so not aimed at temporal reuse

Intended to smooth out some access patterns, help with spilled registers,

etc.

Usually not worth trying to cache-block like you would on CPU

100s to 1,000s of run-time scheduled threads competing for the cache

If it is possible to block for L1 then it’s possible block for SMEM

Same size

Same or higher bandwidth

Guaranteed locality: hw will not evict behind your back

© NVIDIA 2013

Read-only Data Cache

Go through the read-only cache

Not coherent with writes

Thus, addresses must not be written by the same kernel

Two ways to enable:

Decorating pointer arguments as hints to compiler:

Pointer of interest: const __restrict__

All other pointer arguments: __restrict__

– Conveys to compiler that no aliasing will occur

Using __ldg() intrinsic

Requires no pointer decoration

© NVIDIA 2013

Read-only Data Cache

Go through the read-only cache

Not coherent with writes

Thus, addresses must not be written by the same kernel

Two ways to enable:

Decorating pointer arguments as hints to compiler:

Pointer of interest: const __restrict__

All other pointer arguments: __restrict__

– Conveys to compiler that no aliasing will occur

Using __ldg() intrinsic

Requires no pointer decoration

__global__ void kernel(

 int* __restrict__ output,

 const int* __restrict__ input)

{

 ...

 output[idx] = input[idx];

}

© NVIDIA 2013

Read-only Data Cache

Go through the read-only cache

Not coherent with writes

Thus, addresses must not be written by the same kernel

Two ways to enable:

Decorating pointer arguments as hints to compiler:

Pointer of interest: const __restrict__

All other pointer arguments: __restrict__

– Conveys to compiler that no aliasing will occur

Using __ldg() intrinsic

Requires no pointer decoration

__global__ void kernel(int *output,

 int *input)

{

 ...

 output[idx] = __ldg(&input[idx]);

}

© NVIDIA 2013

Texture and Constant Memory

Read-only

Data resides in global memory

Read via special-purpose caches

© NVIDIA 2013

Texture

Separate cache

Dedicated texture cache hardware provides:

Out-of-bounds index handling

clamp or wrap-around

Optional interpolation

Think: using fp indices for arrays

Linear, bilinear, trilinear

– Interpolation weights are 9-bit

Optional format conversion

{char, short, int} -> float

All of these are “free”

© NVIDIA 2013

Examples of Texture Object Indexing

©

2013,

NVIDI

A

11

4

Index Clamp:

0 1 2 3 4

1

2

3

0
(5.5, 1.5)

1

2

3

0
(2.5, 0.5)

(1.0, 1.0)

0 1 2 3 4

1

2

3

0
(5.5, 1.5)

0 1 2 3 4

Index Wrap:

Integer indices fall between

elements

Optional interpolation:
 Weights are determined by coordinate distance

© NVIDIA 2013

OPTIMIZE

Kernel Optimizations: Shared Memory Accesses

© NVIDIA 2013

Shared Memory

Fast, on-chip memory

Accessible by all threads within a thread block

Common allocation for entire thread block

Variety of uses:

Software managed cache (e.g., tiled DGEMM)

Global memory coalescing (e.g., transpose)

Communication within a thread block (e.g., FFT, reductions)

Limited Resource

Use of shared memory affects occupancy

Registers

L1

SM

SMEM

© NVIDIA 2013

Shared Memory Organization

Organized in 32 independent banks

Optimal access: no two words from

same bank

Separate banks per thread

Banks can multicast

Multiple words from same bank serialize

C

Bank

Any 1:1 or multicast pattern

C C C

Bank Bank Bank

C

Bank

C C C

Bank Bank Bank

© NVIDIA 2013

Bank Addressing Examples

 No Bank Conflicts  No Bank Conflicts

Bank 31

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 31

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 31

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 31

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

© NVIDIA 2013

Bank Addressing Examples

 2-way Bank Conflicts  8-way Bank Conflicts

Thread 31
Thread 30
Thread 29
Thread 28

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 31

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 31

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 31

Bank 7

Bank 2
Bank 1
Bank 0 x8

x8

© NVIDIA 2013

Motivating Example: Matrix Transpose

_global__ void gpuTranspose_kernel(int rows,

int cols, float *in, float *out)

{

 int i, j;

 i = blockIdx.x * blockDim.x + threadIdx.x;

 j = blockIdx.y * blockDim.y + threadIdx.y;

 out[i * rows + j] = in[j * cols + i];

}

Either write or read is strided in gmem

and uncoalesced

Solution: tile in shared memory

i

j

© NVIDIA 2013

Transposing with Shared Memory

1. Read block_ij into

shared memory

• Reads are coalesced

2. Transpose shared

memory indices

3. Write transposed

block to global

memory

• Writes are coalesced

i

j

Global

Memory

Shared

Memory

© NVIDIA 2013

Shared Memory Organization

Organized in 32 independent banks

Note: same as warp size. Not a coincidence.

Every 32byte word is in the next bank,

modulo 32.

Optimal access: no two words from

same bank

Separate banks per thread

Banks can multicast

Multiple words from same bank serialize
Called bank conflict, causes instruction replay

C

Bank

Any 1:1 or multicast pattern

C C C

Bank Bank Bank

C

Bank

C C C

Bank Bank Bank

© NVIDIA 2013

Shared Memory: Avoiding Bank Conflicts

Example: 32x32 SMEM array

Warp accesses a column:

32-way bank conflicts (threads in a warp access the same bank)

31

2 1 0

31 2 1 0

31 2 1 0

Bank 0

Bank 1

 …

Bank 31
2 0 1

31

© NVIDIA 2013

Shared Memory: Avoiding Bank Conflicts

Example: 32x32 SMEM array

Warp accesses a column:

32-way bank conflicts (threads in a warp access the same bank)

31

2 1 0

31 2 1 0

31 2 1 0

Bank 0

Bank 1

 …

Bank 31
2 0 1

31

Accesses along row

produces 0 bank

conflicts

Accesses along

column produces 32

bank conflicts

(replays)

© NVIDIA 2013

Shared Memory: Avoiding Bank Conflicts

Add a column for padding:

32x33 SMEM array

Warp accesses a column:

32 different banks, no bank conflicts

31 2 1 0

31 2 1 0

31 2 1 0

padding

Bank 0

Bank 1

 …

Bank 31

31 2 0 1

Accesses along row

produces no bank

conflicts

Accesses along

column produces no

bank conflicts

© NVIDIA 2013

Shared Memory/L1 Sizing

Shared memory and L1 use the same 64KB physical memory

Program-configurable split:

Fermi: 48:16, 16:48

Kepler: 48:16, 16:48, 32:32

CUDA API: cudaDeviceSetCacheConfig(), cudaFuncSetCacheConfig()

Large L1 can improve performance when:

Spilling registers (more lines in the cache -> fewer evictions)

Large SMEM can improve performance when:

Occupancy is limited by SMEM

© NVIDIA 2013

Final Notes on Shared Memory

Fast: high bandwidth, low latency

Useful as user managed cache for coalescing, caching, and

communication within a thread block

Shared memory size / L1 cache size is API-configurable

16k L1 / 48k Shared (default on both Fermi and Kepler)

48k L1 / 16k Shared

32k L1 / 32k Shared (Kepler only).

Be careful of:

Overuse: Excessive allocation can hurt occupancy

Access pattern: Lots of bank conflicts can hurt performance

© NVIDIA 2013

OPTIMIZE

Kernel Optimizations: Instruction Throughput / Control Flow

© NVIDIA 2013

Exposing Sufficient Parallelism

What SMX ultimately needs:

Sufficient number of independent instructions

Kepler GK110 is “wider” than Fermi or GK104; needs more parallelism

Two ways to increase parallelism:

More independent instructions (ILP) within a thread (warp)

More concurrent threads (warps)

© NVIDIA 2013

Independent Instructions: ILP vs. TLP

SMX can leverage available Instruction-Level Parallelism more or

less interchangeably with Thread-Level Parallelism

Sometimes easier to increase ILP than to increase TLP

E.g., # of threads may be limited by algorithm or by HW resource limits

But if each thread has some degree of independent operations to do,

Kepler SMX can leverage that. (E.g., a small loop that is unrolled.)

In fact, some degree of ILP is actually required to approach

theoretical max Instructions Per Clock (IPC)

© NVIDIA 2013

Control Flow

Instructions are issued per 32 threads (warp)

Divergent branches:

Threads within a single warp take different paths

if-else, ...

Different execution paths within a warp are serialized

Different warps can execute different code with no impact on

performance

© NVIDIA 2013

Control Flow

Avoid diverging within a warp

Note: some divergence is not necessarily a problem, but large

amounts impacts execution efficiency

Example with divergence:
if (threadIdx.x > 2) {...} else {...}

Branch granularity < warp size

Example without divergence:
if (threadIdx.x / warpSize > 2) {...} else {...}

Branch granularity is a whole multiple of warp size

© NVIDIA 2013

Control Flow

if (...)

{

 // then-clause

}

else

{

 // else-clause

}

in
s

tr
u

c
ti

o
n

s

© NVIDIA 2013

Execution within warps is coherent
in

s
tr

u
c

ti
o

n
s

 /
 t

im
e

Warp

(“vector” of threads)

35 34 33 63 62 32 3 2 1 31 30 0

Warp

(“vector” of threads)

© NVIDIA 2013

Execution diverges within a warp
in

s
tr

u
c

ti
o

n
s

 /
 t

im
e

3 2 1 31 30 0 35 34 33 63 62 32

© NVIDIA 2013

Execution diverges within a warp
in

s
tr

u
c

ti
o

n
s

 /
 t

im
e

3 2 1 31 30 0 35 34 33 63 62 32

Solution: Group threads with similar control flow

© NVIDIA 2013

Runtime Math Library and Intrinsics

Two types of runtime math library functions

__func(): many map directly to hardware ISA

Fast but lower accuracy (see CUDA Programming Guide for full details)

Examples: __sinf(x), __expf(x), __powf(x, y)

func(): compile to multiple instructions

Slower but higher accuracy (5 ulp or less)

Examples: sin(x), exp(x), pow(x, y)

A number of additional intrinsics:

__sincosf(), __frcp_rz(), ...

Explicit IEEE rounding modes (rz,rn,ru,rd)

© NVIDIA 2013

OPTIMIZE

Optimizing CPU-GPU Interaction: Maximizing PCIe Throughput

© NVIDIA 2013

Maximizing PCIe Throughput

Use transfers that are of reasonable size (a few MB, at least)

Use pinned system memory

Overlap memcopies with useful computation

© NVIDIA 2013

Pinned (non-pageable) memory

Pinned memory enables:

faster PCIe copies

memcopies asynchronous with CPU

memcopies asynchronous with GPU

Usage

cudaHostAlloc / cudaFreeHost

instead of malloc / free

cudaHostRegister / cudaHostUnregister

pin regular memory after allocation

Implication:

pinned memory is essentially removed from host virtual memory

© NVIDIA 2013

Asynchronicity in CUDA

Default:

Kernel launches are asynchronous with CPU

Memcopies (D2H, H2D) block CPU thread

CUDA calls are serialized by the driver

Streams and async functions provide additional asynchronicity:

Memcopies (D2H, H2D) asynchronous with CPU

Ability to concurrently execute kernels and memcopies

Stream: sequence of ops that execute in issue-order on GPU

Operations from different streams may be interleaved

Kernels and memcopies from different streams can be overlapped

© NVIDIA 2013

OPTIMIZE

Optimizing CPU-GPU Interaction: Overlapping Kernel

Execution with Memory Copies

© NVIDIA 2013

Overlap kernel and memory copy

Requirements:

D2H or H2D memcopy from pinned memory

Kernel and memcopy in different, non-0 streams

Code:
cudaStream_t stream1, stream2;

cudaStreamCreate(&stream1);

cudaStreamCreate(&stream2);

cudaMemcpyAsync(dst, src, size, dir, stream1);

kernel<<<grid, block, 0, stream2>>>(…);

potentially

overlapped

© NVIDIA 2013

Call Sequencing for Optimal Overlap

CUDA calls are dispatched in the sequence they were issued

Kepler can concurrently execute:

Up to 32 kernels

Up to 2 memcopies, as long as they are in different directions (D2H, H2D)

A call is dispatched if both are true:

Resources are available

Preceding calls in the same stream have completed

Scheduling:

Kernels are executed in the order in which they were issued

Thread blocks for a given kernel are scheduled if all thread blocks for

preceding kernels have been scheduled and SM resources still available

© NVIDIA 2013

Hyper-Q Enables Efficient Scheduling

Grid Management Unit selects most appropriate task from up to

32 hardware queues (CUDA streams)

Improves scheduling of concurrently executed grids

Particularly interesting for MPI applications when combined with

CUDA MPS (though not limited to MPI applications)

© NVIDIA 2013

Stream Examples without Hyper-Q

K1,M1,K2,M2: K1

M1

K2

M2

K1,K2,M1,M2: K1

M1

K2

M2

K1,M1,M2: K1

M1 M2

K1,M2,M1: K1

M1 M2

K1,M2,M2: K1

M2 M2

Time

K: Kernel

M: Memcopy

Integer: Stream ID

© NVIDIA 2013

Stream Examples with Hyper-Q

K1,M1,K2,M2: K1

M1

K2

M2

K1,K2,M1,M2: K1

M1

K2

M2

K1,M1,M2: K1

M1 M2

K1,M2,M1: K1

M1 M2

K1,M2,M2: K1

M2 M2

Time

K: Kernel

M: Memcopy

Integer: Stream ID

© NVIDIA 2013

Grid Management

Work Distributor

32 active grids

Stream Queue Mgmt

C

B

A

R

Q

P

Z

Y

X

Grid Management Unit
Pending & Suspended Grids

1000s of pending grids

SMX SMX SMX SMX SM SM SM SM

Work Distributor

16 active grids

Stream Queue Mgmt

C

B

A

Z

Y

X

R

Q

P

CUDA

Generated

Work

Fermi Kepler GK110

© NVIDIA 2013

Stream Dependencies Example

void foo(void)
{
 kernel_A<<<g,b,s, stream_1>>>();
 kernel_B<<<g,b,s, stream_1>>>();
 kernel_C<<<g,b,s, stream_1>>>();
}

void bar(void)
{
 kernel_P<<<g,b,s, stream_2>>>();
 kernel_Q<<<g,b,s, stream_2>>>();
 kernel_R<<<g,b,s, stream_2>>>();
}

stream_1

kernel_A

kernel_B

kernel_C

stream_2

kernel_P

kernel_Q

kernel_R

© NVIDIA 2013

Stream Dependencies without Hyper-Q

stream_1

kernel_A

kernel_B

kernel_C

stream_2

kernel_P

kernel_Q

kernel_R

Hardware Work Queue

R—Q—P C—B—A

© NVIDIA 2013

Stream Dependencies with Hyper-Q

Hyper-Q allows 32-way concurrency

Avoids inter-stream dependencies

stream_1

kernel_A

kernel_B

kernel_C

stream_2

kernel_P

kernel_Q

kernel_R

C—B—A

R—Q—P

Multiple Hardware Work Queues

© NVIDIA 2013

Heterogeneous system: overlap work and data movement

Kepler + CUDA 5: Hyper-Q and CPU Callbacks

Hyper-Q Example: Building a Pipeline

DMA

DMA

© NVIDIA 2013

Tick-Tock Matrix Multiply

cudaMemcpyAsync(devA1, A[tile0], N, stream1);
cudaMemcpyAsync(devB1, B[tile0], N, stream1);
DGEMM<<<g,b,s, stream1>>>(devA1, devB1, devC1);

cudaMemcpyAsync(devA2, A[tile1], N, stream2);
cudaMemcpyAsync(devB2, B[tile1], N, stream2);
DGEMM<<<g,b,s, stream2>>>(devTileA, devTileB, devC1);

cudaMemcpyAsync(C[tile0], devC, N, D2H, stream1);
cudaMemcpyAsync(devA1, A[tile2], N, H2D, stream1)
cudaMemcpyAsync(devB1, B[tile2], N, D2H, stream1)
DGEMM<<<g,b,s, stream1>>>(devA1, devB1, devC1);

cudaMemcpyAsync(C[tile1], devC, N, D2H, stream1);
cudaMemcpyAsync(devA1, A[tile4], N, H2D, stream1);
cudaMemcpyAsync(devB1, B[tile4], N, D2H, stream1);
DGEMM<<<g,b,s, stream1>>>(devA1, devB1, devC1);

© NVIDIA 2013

Tick-Tock Matrix Multiply

dA1

stream 1

stream 2

memcpy

B[0]

dB1

DGEMM

dC_1 =dA_1 x dB_1

dC1 dA1 dB1

A[0]

C[0]
B[2]

A[2]

DGEMM

dC_2 =dA_2 x dB_2

DGEMM

C_1 =A_1 x B_1

B[1]
A[1]

dA2 dB2

memcpy

DGEMM

C_2 =A_2 x B_2

dC2 dA2 dB2

C[1]
B[3]

A[3]

C[2]
B[4]

A[4]

dC1 dA1 dB1

DGEMM

C_1 =A_1 x B_1

Copy Tile 0 Copy Tile 1

Compute Tile 0

Copy Tile 2

Compute Tile 1

Copy Tile 3

Compute Tile 2

Copy Tile 4

Compute Tile 3

GPU Memory

CPU Memory

memcpy

memcpy

memcpy

memcpy

dC2 dA2 dB2

C[3]
B[5]

A[5]

Copy Tile 5

Compute Tile 4

© NVIDIA 2013

Just a Higher Level of Parallelism

Problem is decomposed into parallel

“workers”.

At any given time

1 worker is using compute resources

1 worker is using copy transfers

Importantly:

The PCI-E link is kept saturated with

useful work.

For DGEMM, compute is also saturated.

Arch specific balancing

Depends on CPU and GPU

characteristics.

tile computed by stream 1

tile computed by stream 2

Result Matrix:

© NVIDIA 2013

Pipeline Code

for (unsigned int i = 0 ; i < nIterations ; ++i)
{
 // Copy data from host to device
 cudaMemcpyAsync(d_data, h_data, cpybytes, cudaMemcpyHostToDevice,
 *r_streams.active());

 // Launch device kernel A
 kernel_A<<<gdim, bdim, 0, *r_streams.active()>>>();

 // Copy data from device to host
 cudaMemcpyAsync(h_data, d_data, cpybytes, cudaMemcpyDeviceToHost,
 *r_streams.active());

 // Launch host post-process
 cudaStreamAddCallback(*r_streams.active(), cpu_callback,
 r_streamids.active(), 0);

 // Rotate streams
 r_streams.rotate(); r_streamids.rotate();
}

© NVIDIA 2013

False dependencies prevent overlap

Breadth-first launch gives overlap, requires more complex code

Pipeline Without Hyper-Q

© NVIDIA 2013

Full overlap of all engines

Simple to program

Pipeline With Hyper-Q

© NVIDIA 2013

Hyper-Q also enables CUDA MPS

No application modifications necessary

Start MPS daemon using nvidia_cuda_mps_control -d

CUDA driver detects daemon and routes GPU accesses through it

Combines requests from several processes into one GPU context

(shared virtual memory space, concurrent kernels possible, etc.)

Allows for overlap of kernels with memcopies without explicit

use of streams

© NVIDIA 2013

But Hyper-Q != CUDA MPS

One process: No MPS required!

Automatically utilized

One or many host threads no problem

Just need multiple CUDA streams

Removes false dependencies among CUDA streams that

reduce effective concurrency on earlier GPUs

Multi-process: Use CUDA MPS

Leverages task-level parallelism across processes (e.g., MPI ranks)

MPI is not required for MPS – it’s just the common case for HPC

© NVIDIA 2013

Deploy

We’ve removed (or reduced) some bottleneck

Our app is now faster while remaining fully functional*

Let’s take advantage of that!

*Don’t forget to check correctness at every step

© NVIDIA 2013

GPU Optimization Fundamentals

Recap:

Develop systematically with APOD

Expose sufficient parallelism

Utilize parallel processing resources efficiently

Assess

Parallelize

Optimize

Deploy

© NVIDIA 2013

 Online Resources

www.udacity.com

docs.nvidia.com developer.nvidia.com

devtalk.nvidia.com

www.stackoverflow.com

