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Note: Fundamentals will apply broadly 

Example performance numbers are presented for Tesla K20X, 

which is based on the Kepler GK110 GPU 

Same general optimization concepts apply to other GPUs, though 

some parameters may be different, e.g.: 

Number of SMs per GPU 

Number of functional units per SM 

Maximum number of concurrent warps per SM 

Shared memory size per SM 

Register file size per SM 

Developer tools from NVIDIA help you analyze the concepts 

without having to memorize parameters of each architecture 
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GPU OPTIMIZATION FUNDAMENTALS 
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Main Requirements for GPU Performance 

Expose sufficient parallelism 

 

Utilize parallel execution resources efficiently 

Use memory system efficiently 

Coalesce global memory accesses 

Use shared memory where possible 

Have coherent execution within warps of threads 
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APOD: A Systematic Path to Performance 

Assess 

Parallelize 

Optimize 

Deploy 
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Identify hotspots (total time, number of calls) 

Understand scaling (strong and weak) 

Assess 

HOTSPOTS 
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Parallelize 

Applications 

Libraries 
Programming 

Languages 
Compiler 

Directives 
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Optimize 

Profile-driven optimization 

 

Tools: 

nsight Visual Studio Edition or Eclipse Edition 

nvvp NVIDIA Visual Profiler 

nvprof Command-line profiling 
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Deploy 

Check API return values 

Run cuda-memcheck tools 

Library distribution 

Cluster management 

 

Early gains 

Subsequent changes are evolutionary  

Productize 
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ASSESS 



© NVIDIA 2013 

Profile the code, find the hotspot(s) 

Focus your attention where it will give the most benefit 

Assess 
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Assess 

We’ve found a hotspot to work on! 

What percent of our total time does this represent? 

How much can we improve it? What is the “speed of light”? 

How much will this improve our overall performance? 
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Assess 

Let’s investigate… 

Strong scaling and Amdahl’s Law 

Weak scaling and Gustafson’s Law 

Expected perf limiters: Bandwidth? Computation? Latency? 
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Assess: Understanding Scaling 

Strong Scaling 

A measure of how, for fixed overall problem size, the time to 

solution decreases as more processors are added to a system 

Linear strong scaling: speedup achieved is equal to number of 

processors used 

 

Amdahl’s Law: 

𝑺 =
𝟏

𝟏 − 𝑷 +
𝑷
𝑵

 ≈
𝟏

(𝟏 − 𝑷)
 



© NVIDIA 2013 

Assess: Understanding Scaling 

Weak Scaling 

A measure of how time to solution changes as more processors 

are added with fixed problem size per processor 

Linear weak scaling: overall problem size increases as num. of 

processors increases, but execution time remains constant 

 

Gustafson’s Law: 

 

𝑺 = 𝑵 + (𝟏 − 𝑷)(𝟏 − 𝑵) 
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Assess: Applying Strong and Weak Scaling 

Understanding which type of scaling is most applicable is an 

important part of estimating speedup: 

Sometimes problem size will remain constant 

Other times problem size will grow to fill the available processors 

 

Apply either Amdahl's or Gustafson's Law to determine an upper 

bound for the speedup 
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Assess: Applying Strong Scaling 

Recall that in this case we are wanting to optimize an 

existing kernel with a pre-determined workload 

 

That’s strong scaling, so Amdahl’s Law will determine 

the maximum speedup 

 

~93% 
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Assess: Applying Strong Scaling 

Say, for example, our kernel is ~93% of total time: 

Speedup 𝑺 =
𝟏

𝟏−𝑷 +
𝑷

𝑺
𝑷

     (SP = speedup in parallel part) 

In the limit when 𝑺𝑷 is huge, 𝑺 will approach 
𝟏

𝟏−𝟎.𝟗𝟑
≈ 𝟏𝟒. 𝟑 

In practice, it will be less than that depending on the 𝑺𝑷 achieved 

Getting 𝑺𝑷 to be high is the goal of optimizing, of course 

~93% 
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Assess: Speed of Light 

What’s the limiting factor? 

Memory bandwidth? 

Compute throughput? 

Latency? 

 

Not sure? 

Get a rough estimate by counting bytes per instruction, 

compare it to “balanced” peak ratio 
𝑮𝑩𝒚𝒕𝒆𝒔/𝒔𝒆𝒄

 𝑮𝒊𝒏𝒔𝒏𝒔/𝒔𝒆𝒄
 

Profiler will help you determine this 
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Assess: Limiting Factor 

Comparing bytes per instr. will give you a guess as to whether 

you’re likely to be bandwidth-bound or instruction-bound 

 

Comparing actual achieved GB/s vs. theory and achieved 

Ginstr/s vs. theory will give you an idea of how well you’re doing 

If both are low, then you’re probably latency-bound and need to expose 

more (concurrent) parallelism 
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Assess: Limiting Factor 
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Assess: Speed of Light 

What’s the limiting factor? 

Memory bandwidth? Compute throughput? Latency? 

 

Consider SpMV: intuitively expect it to be bandwidth-limited 

Say we discover we’re getting only ~38% of peak bandwidth 

If we aim to get this up to ~65% of peak, that’s 1.7 for this kernel 

1.7  for this kernel translates into 1.6 overall due to Amdahl: 

 𝐒 =
𝟏

𝟏−𝟎.𝟗𝟑 +
𝟎.𝟗𝟑

𝟏.𝟕

≈ 𝟏. 𝟔 

~93% 
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Assess: Limiting Factor 

For our example SpMV kernel, our first discovery was that we’re 

latency-limited, not bandwidth, since utilization was so low 

 

This tells us our first “optimization” step actually needs to be 

related how we expose (memory-level) parallelism 

~93% 



© NVIDIA 2013 

PARALLELIZE 
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PARALLELIZE 

Computation 
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Parallelize 

Applications 

Libraries 
Programming 

Languages 
Compiler 

Directives 

Pick the best tool for the job 
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NVIDIA cuFFT NVIDIA cuSPARSE NVIDIA cuBLAS 

NVIDIA cuRAND 

NVIDIA NPP 

Vector Signal 
Image Processing 

Matrix Algebra on 
GPU and Multicore 

C++ Templated  
Parallel Algorithms  IMSL Library 

GPU Accelerated 
Linear Algebra 

Building-block 
Algorithms CenterSpace NMath 

Parallelize: e.g., with GPU Accelerated Libraries 

http://code.google.com/p/thrust/downloads/list
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// generate 32M random numbers on host 
thrust::host_vector<int> h_vec(32 << 20); 
thrust::generate(h_vec.begin(),  
                 h_vec.end(),  
                 rand); 
 
// transfer data to device (GPU) 
thrust::device_vector<int> d_vec = h_vec; 
 
// sort data on device  
thrust::sort(d_vec.begin(), d_vec.end()); 
 
// transfer data back to host 
thrust::copy(d_vec.begin(),  
             d_vec.end(),  
             h_vec.begin()); 

 

Parallelize: e.g., with Thrust 

Similar to C++ STL 

High-level interface 

Enhances developer productivity 

Enables performance portability 
between GPUs and multicore CPUs 

Flexible 

Backends for CUDA, OpenMP, TBB 

Extensible and customizable 

Integrates with existing software 

Open source 

thrust.github.com or developer.nvidia.com/thrust 
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Parallelize: e.g., with OpenACC  

Program myscience 

   ... serial code ... 

!$acc kernels 

   do k = 1,n1 

      do i = 1,n2 

          ... parallel code ... 

      enddo 

    enddo 

!$acc end kernels  

  ... 

End Program myscience 

CPU GPU 

Your original  

Fortran or C code 

Directives-based approach 

Compiler parallelizes code 

Works on many-core GPUs & 

multicore CPUs 

OpenACC

Compiler 

Directive 

www.nvidia.com/gpudirectives 
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void saxpy_serial(int n,  

                  float a,  

                  float *x,  

                  float *y) 

{ 

   

  for (int i = 0; i < n; ++i) 

    y[i] = a*x[i] + y[i]; 

} 

 

// Perform SAXPY on 1M elements 

saxpy_serial(4096*256, 2.0, x, y); 

__global__  

void saxpy_parallel(int n,  

                    float a,  

                    float *x,  

                    float *y) 

{ 

  int i = blockIdx.x * blockDim.x +  

          threadIdx.x; 

  if (i < n) y[i] = a*x[i] + y[i]; 

} 

 

// Perform SAXPY on 1M elements 

saxpy_parallel<<<4096,256>>>(n,2.0,x,y); 

Parallelize: e.g., with CUDA C 

Standard C Code CUDA C Code 

developer.nvidia.com/cuda-toolkit 
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Parallelism Needed 

GPU is a parallel machine 

Lots of arithmetic pipelines 

Multiple memory banks 

 

To get good performance, your code must expose sufficient 

parallelism for 2 reasons: 

To actually give work to all the pipelines 

To hide latency of the pipelines 

 

Rough rule of thumb for Tesla K20X: 

You want to have 14K or more threads running concurrently 
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void transpose(float in[][], float out[][], int N) 

{ 

  for(int j=0; j < N; j++) 

    for(int i=0; i < N; i++) 

      out[j][i] = in[i][j]; 

} 

Case Study: Matrix Transpose 

i 

j 
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+ Quickly implemented                                      - Performance weak 

Need to expose parallelism! 

An Initial CUDA Version 

__global__ void transpose(float in[], float out[], int N) 

{ 

  for(int j=0; j < N; j++) 

     for(int i=0; i < N; i++) 

       out[i*N+j] = in[j*N+i]; 

 

} 

 

 

float in[N*N], out[N*N];   

… 

transpose<<<1,1>>>(in, out, N); 
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+ Quickly implemented                                      - Performance weak 

Need to expose parallelism! 

An Initial CUDA Version 

__global__ void transpose(float in[], float out[], int N) 

{ 

  for(int j=0; j < N; j++) 

     for(int i=0; i < N; i++) 

       out[i*N+j] = in[j*N+i]; 

 

} 

 

 

float in[N*N], out[N*N];   

… 

transpose<<<1,1>>>(in, out, N); 
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Parallelize across matrix elements 

tid 

in 

tid tid 

tid  out 

tid 

tid 

__global__ transpose(float in[], float out[]) 

{ 

  int tid = threadIdx.x; 

  int bid = blockIdx.x; 

 

  out[tid*N+bid] = in[bid*N+tid]; 

} 

 

 

float in[], out[];   

… 

transpose<<<N,N>>>(in, out); 

Process elements independently 
bid 
bid 

bid bid 
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PARALLELIZE 

Data Transfer 
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Heterogeneous system: overlap work and data movement 

Asynchronicity = Overlap = Parallelism 

DMA 

DMA 
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This is the kind of case we would be concerned about 

Found the top kernel, but the GPU is mostly idle – that is our bottleneck 

Need to overlap CPU/GPU computation and PCIe transfers 

Asynchronicity 
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What we want to see is maximum overlap of all engines 

Parallelize: Achieve Asynchronicity 



© NVIDIA 2013 

OPTIMIZE 
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Main Requirements for GPU Performance 

Expose sufficient parallelism 

 

Utilize parallel execution resources efficiently 

Use memory system efficiently 

Coalesce global memory accesses 

Use shared memory where possible 

Have coherent execution within warps of threads 
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GPU Optimization Fundamentals 

Find ways to parallelize sequential code 

Adjust kernel launch configuration to maximize device utilization 

Ensure global memory accesses are coalesced 

Minimize redundant accesses to global memory 

Avoid different execution paths within the same warp 

Minimize data transfers between the host and the device 

 

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/  

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
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GPU Optimization Fundamentals 

Find ways to parallelize sequential code 

 

Kernel optimizations 

Launch configuration 

Global memory throughput 

Shared memory access 

Instruction throughput / control flow 

 

Optimization of CPU-GPU interaction 

Maximizing PCIe throughput 

Overlapping kernel execution with memory copies 
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OPTIMIZE 

Kernel Optimizations: Kernel Launch Configuration 
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Kernel Launch Configuration 

A kernel is a function that runs on the GPU 

A kernel is launched as a grid of blocks of threads 

Launch configuration is the number of blocks and number of 

threads per block, expressed in CUDA with the <<< >>> notation: 

 
mykernel<<<blocks_per_grid,threads_per_block>>>(…); 

 

What values should we pick for these? 

Need enough total threads to process entire input 

Need enough threads to keep the GPU busy 

Selection of block size is an optimization step involving warp occupancy 
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High-level view of GPU Architecture 

Several Streaming Multiprocessors 

E.g., Kepler GK110 has up to 15 SMs 

L2 Cache shared among SMs 

Multiple channels to DRAM 

Kepler GK110 
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Kepler Streaming Multiprocessor (SMX) 

Per SMX: 
192 SP CUDA Cores 

64 DP CUDA Cores 

4 warp schedulers 

Up to 2048 concurrent threads 

One or two instructions issued 

per scheduler per clock from a 

single warp 

Register file (256KB) 

Shared memory (48KB) 
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CUDA Execution Model 

Thread: Sequential execution unit 

All threads execute same sequential program 

Threads execute in parallel 
 

Threads Block: a group of threads 

Executes on a single Streaming Multiprocessor (SM) 

Threads within a block can cooperate 

Light-weight synchronization 

Data exchange 
 

Grid: a collection of thread blocks 

Thread blocks of a grid execute across multiple SMs 

Thread blocks do not synchronize with each other 

Communication between blocks is expensive 
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Software Hardware 

Threads are executed by scalar CUDA Cores 

Thread 

CUDA 

Core 

Thread Block Multiprocessor 

Thread blocks are executed on multiprocessors 

 

Thread blocks do not migrate 

 

Several concurrent thread blocks can reside on 

one multiprocessor - limited by multiprocessor 

resources (shared memory and register file) 

Grid 

A kernel is launched as a grid of thread blocks 

Execution Model 

Device 
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Launch Configuration: General Guidelines 

How many blocks should we use? 

1,000 or more thread blocks is best 

Rule of thumb: enough blocks to fill the GPU at least 10s of times over 

Makes your code ready for several generations of future GPUs 
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Launch Configuration: General Guidelines 

How many threads per block should we choose? 

The really short answer: 128, 256, or 512 are often good choices 

 

The slightly longer answer: 

Pick a size that suits the problem well 

Multiples of 32 threads are best 

Pick a number of threads per block (and a number of blocks) that is 

sufficient to keep the SM busy 
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Multiprocessor 

32 Threads 

Warps 

A thread block consists 

of warps of 32 threads 

 

A warp is executed 

physically in parallel on 

some multiprocessor. 

 

Threads of a warp issue 

instructions in lock-

step (as with SIMD) 

= 

Warps 

Thread Block 

32 Threads 

32 Threads 

32 Threads 
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Hardware Levels of Parallelism 

SIMD MPI 

Single Instruction, Multiple Data 

In-core parallelism 

SMT 

Simultaneous Multithreading 

Cross-core, Cross-socket 

Single Computer 

OpenMP, pthreads 

 

Multiple “computers” 

Tightly-coupled 

Supercomputing apps 

 

SIMT 

Single Instruction, Multiple Threads 

In-processor parallelism 

Many threads on many cores 

These form a continuum. Best performance is achieved with a mix. 
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Low Latency or High Throughput? 

CPU 

Optimized for low-latency 

access to cached data sets 

Control logic for out-of-order 

and speculative execution 
 

GPU 

Optimized for data-parallel, 

throughput computation 

Architecture tolerant of 

memory latency 

More transistors dedicated to 

computation 
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Occupancy 

Need enough concurrent warps 

per SM to hide latencies: 

Instruction latencies 

Memory access latencies 

 

Hardware resources determine 

number of warps that fit per SM 

 

Occupancy = Nactual / Nmax  
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Low Latency or High Throughput? 

CPU architecture must minimize latency within each thread 

GPU architecture hides latency with computation from other (warps of) threads 

GPU Streaming Multiprocessor – High-throughput Processor 

CPU core – Low-latency Processor 

Computation Thread/Warp 

Tn 

 

Processing 

Waiting for data 

Ready to be processed 

Context switch 

W1 

 

W2 

 

W3 

 

W4 

 

T1 

 

T2 

 

T3 

 

T4 
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Latency Hiding 

Instruction latencies: 

Roughly 10-20 cycles for arithmetic operations 

DRAM accesses have higher latencies (400-800 cycles) 

Instruction Level Parallelism (ILP) 

Independent instructions between two dependent ones 

ILP depends on the code, done by the compiler 

Switching to a different warp 

If a warp must stall for N cycles due to dependencies, having N other 

warps with eligible instructions keeps the SM going 

Switching among concurrently resident warps has no overhead 

State (registers, shared memory) is partitioned, not stored/restored 

     FFMA R0, R43, R0, R4; 

     FFMA R1, R43, R4, R5; 

     FMUL R7, R9, R0; 

     FMUL R8, R9, R1; 

     ST.E [R2], R7; 

ILP=2 
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Occupancy 

Occupancy: number of concurrent warps per SM, expressed as: 

Absolute number of warps of threads that fit concurrently (e.g., 1..64), or 

Ratio of warps that fit concurrently to architectural maximum (0..100%) 

 

Number of warps that fit determined by resource availability: 

Threads per thread block 

Registers per thread 

Shared memory per thread block Kepler SM resources: 
 

– 64K 32-bit registers 

– Up to 48 KB of shared memory 

– Up to 2048 concurrent threads 

– Up to 16 concurrent thread blocks 
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Occupancy and Performance 

Note that 100% occupancy isn’t needed to reach maximum 

performance 

Once the “needed” occupancy (enough warps to switch among to cover 

latencies) is reached, further increases won’t improve performance 

 

Level of occupancy needed depends on the code 

More independent work per thread -> less occupancy is needed 

Memory-bound codes tend to need more occupancy 

Higher latency than for arithmetic, need more work to hide it 
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Thread Block Size and Occupancy 

Thread block size is a multiple of warp size (32) 

Even if you request fewer threads, hardware rounds up 

Thread blocks can be too small 

Kepler SM can run up to 16 thread blocks concurrently 

SM can reach the block count limit before reaching good occupancy 

E.g.: 1-warp blocks = 16 warps/SM on Kepler (25% occ – probably not enough) 

Thread blocks can be too big 

Enough SM resources for more threads, but not enough for a whole block 

A thread block isn’t started until resources are available for all of its threads 
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Thread Block Sizing 

SM resources: 

Registers 

Shared memory 

Number of warps allowed by SM resources 
Too few 

threads per block 

Too many 

threads per block 
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CUDA Occupancy Calculator 

 

 

 

Analyze effect of 

resource consumption 

on occupancy 
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Occupancy Analysis in NVIDIA Visual Profiler 

 

 

 

Occupancy here is limited 

by grid size and number of 

threads per block 
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OPTIMIZE 

Kernel Optimizations: Global Memory Throughput 
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Host 

CPU 

Chipset 

DRAM 

Device 

DRAM 

 

 

 

 

 

 

Global 

Constant 

Texture 

Local 

GPU 

Multiprocessor 

Registers 

Shared Memory 

Multiprocessor 

Registers 

Shared Memory 

Multiprocessor 

Registers 

Shared Memory 

Constant and Texture  

Caches 

L1 / L2 Cache 

CUDA Memory Architecture 
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Optimizing Memory Throughput 

Goal: utilize all available memory 

bandwidth 

 

Little’s Law: 

# bytes in flight = latency * bandwidth 

 

 

 Increase parallelism (bytes in flight) 

 (or) 

 Reduce latency (time between requests) 

A
c
c
e
s
s
 l
a
te

n
c
y 

L
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Illustration: Little’s Law for Escalators 

Say the parameters of our escalator are: 

1 person fits on each step 

Step arrives every 2 secs (bandwidth=0.5 persons/s) 

20 steps tall (latency=40 seconds) 

1 person in flight: 0.025 persons/s achieved 

To saturate bandwidth:  

Need 1 person arriving every 2 s 

Means we’ll need 20 persons in flight 

The idea: Bandwidth × Latency 

It takes latency time units for the first person to arrive 

We need bandwidth persons to get on the escalator every time unit 
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Memory-Level Parallelism = Bandwidth 

In order to saturate memory bandwidth, SM must have 

enough independent memory requests in flight concurrently 
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Memory-Level Parallelism: Requests in flight 

Achieved Kepler memory throughput 

Shown as a function of number of concurrent requests 

per SM with 128-byte lines 
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Experiment: vary size of accesses by 

threads of a warp, check performance 
Memcopy kernel: each warp has 2 concurrent 

requests (one write and the read following it) 

Accesses by a warp: 

 4B words: 1 line 

 8B words: 2 lines 

 16B words: 4 lines 

 

To achieve same 

throughput at lower 

occupancy or with 

smaller words, need 

more independent 

requests per warp 

Requests per Thread and Performance 
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Optimizing Access Concurrency 

Ways to increase concurrent accesses: 

Increase occupancy (run more warps concurrently) 

Adjust block dimensions to maximize occupancy 

If occupancy is limited by registers per thread, try to reduce register count 

(-maxrregcount option or __launch_bounds__) 

 

Modify code to process several elements per thread 

Doubling elements per thread doubles independent accesses per thread 
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OPTIMIZE 

Kernel Optimizations: Global Memory Access Coalescing 
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Mechanics of a Memory Access 

Memory operations are issued per warp 

Just like all other instructions 

 

Operation: 

Threads in a warp provide memory addresses 

Hardware determines which lines/segments are needed, fetches them 
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Memory Access Efficiency Analysis 

Two perspectives on the throughput: 

Application’s point of view: count only bytes requested by application 

HW point of view: count all bytes moved by hardware 

 

The two views can be different: 

Memory is accessed at 32 byte granularity 

With a scattered or offset pattern, the application doesn’t use all the bytes the 

hardware actually transferred 

Broadcast: the same small transaction serves many threads in a warp 
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Access Patterns vs. Memory Throughput 

Scenario: 
Warp requests 32 aligned, consecutive 4-byte words 

Addresses fall within 4 segments 
Warp needs 128 bytes 

128 bytes move across the bus 

Bus utilization: 100% 

... 
addresses from a warp 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 
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Access Patterns vs. Memory Throughput 

... 
addresses from a warp 

Scenario: 
Warp requests 32 aligned, permuted 4-byte words 

Addresses fall within 4 segments 
Warp needs 128 bytes 

128 bytes move across the bus 

Bus utilization: 100% 

 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 
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Access Patterns vs. Memory Throughput 

Scenario: 
Warp requests 32 misaligned, consecutive 4-byte words 

Addresses fall within at most 5 segments 
Warp needs 128 bytes 

At most 160 bytes move across the bus 

Bus utilization: at least 80% 

Some misaligned patterns will fall within 4 segments, so 100% utilization 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 

... 
addresses from a warp 
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Access Patterns vs. Memory Throughput 

addresses from a warp 

Scenario: 
All threads in a warp request the same 4-byte word 

Addresses fall within a single segment 
Warp needs 4 bytes 

32 bytes move across the bus 

Bus utilization: 12.5% 

 

... 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 
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Access Patterns vs. Memory Throughput 

addresses from a warp 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 

Scenario: 
Warp requests 32 scattered 4-byte words 

Addresses fall within N segments 
Warp needs 128 bytes 

N*32 bytes move across the bus 

Bus utilization:  128 / (N*32) 

... 
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Parallelizing SAXPY 

void saxpy(int n, float a, float * x, float 

* y) 

{ 

  for(int i=0; i<n; i++) 

  { 

 y[base +i] += a * x[base+ i]; 

  } 

} 

 

Divide the work equally 

among T threads 

Each thread is responsible for 

computing one contiguous 

‘region’ of the arrays 

This is good for pthreads 
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Parallelizing SAXPY 

__global__ void saxpy1(int n, float a, float 

* x, float * y) 

{ 

  int workPerThread = 1 + n/blockDim.x; 

  int base = threadIdx.x * workPerThread; 

 

  for(int i=0; i<workPerThread; i++) 

  { 

    if(base + i < n) 

    { 

      y[base +i] += a * x[base+ i]; 

    } 

  } 

} 

 

Divide the work equally 

among T threads 

Each thread is responsible for 

computing one contiguous 

‘region’ of the arrays 

This is good for pthreads 

 

thread 0 thread 1 thread 2 thread 3 … thread 31 

x 
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Parallelizing SAXPY 

__global__ void saxpy1(int n, float a, float 

* x, float * y) 

{ 

  int workPerThread = 1 + n/blockDim.x; 

  int base = threadIdx.x * workPerThread; 

 

  for(int i=0; i<workPerThread; i++) 

  { 

    if(base + i < n) 

    { 

      y[base +i] += a * x[base+i]; 

    } 

  } 

} 

 

In SIMT, 32 threads of a warp 

issue the x[base+i] instruction 

simultaneously. 

Each thread has different value 

of base 

if workPerThread > 1, this 

becomes a strided load 

thread 0 thread 1 thread 2 thread 3 … thread 31 

x 
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Parallelizing SAXPY 

__global__ void saxpy1(int n, float a, float 

* x, float * y) 

{ 

  int workPerThread = 1 + n/blockDim.x; 

  int base = threadIdx.x * workPerThread; 

 

  for(int i=0; i<workPerThread; i++) 

  { 

    if(base + i < n) 

    { 

      y[base +i] += a * x[base+i]; 

    } 

  } 

} 

 

In SIMT, 32 threads of a warp 

issue the x[base+i] instruction 

simultaneously. 

Each thread has different value 

of base 

if workPerThread > 1, this 

becomes a strided load 

thread 0 thread 1 thread 2 thread 3 … thread 31 

x 
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… 

A Better Way to Parallelize SAXPY 

Divide work up so that each 

pass through the loop, the 

thread block computes one 

‘contiguous region’ of the 

array. 

Achieves memory coalescing 

 

loopcount = 0 loopcount = 1  … 

x 

loopcount=k 

__global__ void saxpy2(int n, float a, float 

* x, float * y) 

{ 

  int id; 

  int loopCount = 0; 

  while(id < n) 

  { 

    id = loopCount*blockDim.x + threadIdx.x; 

    y[id] += a * x[id]; 

    loopCount++;  

  } 

} 
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__global__ void saxpy2(int n, float a, float 

* x, float * y) 

{ 

  int id; 

  int loopCount = 0; 

  while(id < n) 

  { 

    id = loopCount*blockDim.x + threadIdx.x; 

    y[id] += a * x[id]; 

    loopCount++;  

  } 

} 

 

The area of X addressed by 

each warp is contiguous in 

global memory. 

The number of global memory 

transactions is minimized. 

This effect translates to loads 

and stores of y also. 

loopcount = 0 loopcount = 1  … 

… x 

A Better Way to Parallelize SAXPY 

loopcount=k 
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Structures of Non-Native Size 

Say we are reading a 12-byte structure per thread 

 

struct Position 

{ 

 float x, y, z; 

}; 

... 

__global__ void kernel( Position *data, ... ) 

{ 

 int idx = blockIdx.x * blockDim.x + threadIdx.x; 

 Position temp = data[idx]; 

 ... 

} 
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Structure of Non-Native Size 

Compiler converts temp = data[idx] into 3 loads: 

Each loads 4 bytes 

Can’t do an 8 and a 4 byte load: 12 bytes per element means that every 

other element wouldn’t align the 8-byte load on 8-byte boundary 

Addresses per warp for each of the loads: 

Successive threads read 4 bytes at 12-byte stride 
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First Load Instruction 

4 8 12 16 20 56 60 64 0 24 48 52 36 40 44 28 32 

addresses from a warp 

... 
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Second Load Instruction 

4 8 12 16 20 56 60 64 0 24 48 52 36 40 44 28 32 

addresses from a warp 

... 



© NVIDIA 2013 

Third Load Instruction 

4 8 12 16 20 56 60 64 0 24 48 52 36 40 44 28 32 

addresses from a warp 

... 
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Performance and Solutions 

Because of the address pattern, we end up moving 3x more bytes 

than application requests 

We waste a lot of bandwidth, leaving performance on the table 

Potential solutions: 

Change data layout from array of structures to structure of arrays 

In this case: 3 separate arrays of floats 

The most reliable approach (also ideal for both CPUs and GPUs) 

Use loads via read-only cache 

As long as lines survive in the cache, performance will be nearly optimal 

Stage loads via shared memory 
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Global Memory Access Patterns 

SoA vs AoS: 

Good: point.x[i] 

Not so good: point[i].x 
 

Strided array access: 

~OK: x[i] = a[i+1]  – a[i] 

Slower: x[i] = a[64*i] – a[i] 
 

Random array access: 

Slower: a[rand(i)] 

0 1 31 

0 1 31 
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Summary: GMEM Optimization 

Strive for perfect address coalescing per warp 

Align starting address (may require padding) 

A warp will ideally access within a contiguous region 

Avoid scattered address patterns or patterns with large strides between 

threads 

Analyze and optimize address patterns: 

Use profiling tools (included with CUDA toolkit download) 

Compare the transactions per request to the ideal ratio 

Choose appropriate data layout (prefer SoA) 

If needed, try read-only loads, staging accesses via SMEM 
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A note about caches 

L1 and L2 caches 

Ignore in software design 

Thousands of concurrent 

threads – cache blocking 

difficult at best 

 

Read-only Data Cache 

Shared with texture pipeline 

Useful for uncoalesced reads 

Handled by compiler when 

const __restrict__ is used, or 

use __ldg() primitive 
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Blocking for GPU Memory Caches 

Short answer: DON’T 

GPU caches are not intended for the same use as CPU caches 

Smaller size (especially per thread), so not aimed at temporal reuse 

Intended to smooth out some access patterns, help with spilled registers, 

etc. 

Usually not worth trying to cache-block like you would on CPU 

100s to 1,000s of run-time scheduled threads competing for the cache 

If it is possible to block for L1 then it’s possible block for SMEM 

Same size 

Same or higher bandwidth 

Guaranteed locality: hw will not evict behind your back 
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Read-only Data Cache 

Go through the read-only cache 

Not coherent with writes 

Thus, addresses must not be written by the same kernel 

Two ways to enable: 

Decorating pointer arguments as hints to compiler: 

Pointer of interest: const __restrict__ 

All other pointer arguments: __restrict__ 

– Conveys to compiler that no aliasing will occur 

Using __ldg() intrinsic 

Requires no pointer decoration 
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Read-only Data Cache 

Go through the read-only cache 

Not coherent with writes 

Thus, addresses must not be written by the same kernel 

Two ways to enable: 

Decorating pointer arguments as hints to compiler: 

Pointer of interest: const __restrict__ 

All other pointer arguments: __restrict__ 

– Conveys to compiler that no aliasing will occur 

Using __ldg() intrinsic 

Requires no pointer decoration 

 

__global__ void kernel( 

              int* __restrict__ output, 

        const int* __restrict__ input ) 

{ 

     ... 

     output[idx] = input[idx]; 

} 
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Read-only Data Cache 

Go through the read-only cache 

Not coherent with writes 

Thus, addresses must not be written by the same kernel 

Two ways to enable: 

Decorating pointer arguments as hints to compiler: 

Pointer of interest: const __restrict__ 

All other pointer arguments: __restrict__ 

– Conveys to compiler that no aliasing will occur 

Using __ldg() intrinsic 

Requires no pointer decoration 

 

__global__ void kernel( int *output,  

                        int *input ) 

{ 

     ... 

     output[idx] = __ldg( &input[idx] ); 

} 



© NVIDIA 2013 

Texture and Constant Memory 

Read-only 

Data resides in global memory 

Read via special-purpose caches 
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Texture 

Separate cache 

Dedicated texture cache hardware provides: 

Out-of-bounds index handling 

clamp or wrap-around 

Optional interpolation 

Think: using fp indices for arrays 

Linear, bilinear, trilinear 

– Interpolation weights are 9-bit 

Optional format conversion 

{char, short, int} -> float 

All of these are “free” 
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Examples of Texture Object Indexing 

© 

2013, 

NVIDI

A 

11

4 

Index Clamp: 

0    1    2    3    4 

1 

2 

3 

0 
(5.5, 1.5) 

1 

2 

3 

0 
(2.5, 0.5) 

(1.0, 1.0) 

0    1    2    3    4 

1 

2 

3 

0 
(5.5, 1.5) 

0    1    2    3    4 

Index Wrap: 

Integer indices fall between 

elements 

Optional interpolation: 
    Weights are determined by coordinate distance  
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OPTIMIZE 

Kernel Optimizations: Shared Memory Accesses 
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Shared Memory 

Fast, on-chip memory 

Accessible by all threads within a thread block 

Common allocation for entire thread block 

Variety of uses: 

Software managed cache (e.g., tiled DGEMM) 

Global memory coalescing (e.g., transpose) 

Communication within a thread block  (e.g., FFT, reductions) 

Limited Resource 

Use of shared memory affects occupancy 

Registers 

L1 

SM 

SMEM 
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Shared Memory Organization 

Organized in 32 independent banks 
 

Optimal access: no two words from 

same bank 

Separate banks per thread 

Banks can multicast 

 

Multiple words from same bank serialize 
 

C 

Bank 

Any 1:1 or multicast pattern 

C C C 

Bank Bank Bank 

C 

Bank 

C C C 

Bank Bank Bank 
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Bank Addressing Examples 

 No Bank Conflicts  No Bank Conflicts 

Bank 31 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 31 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 31 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 31 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 
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Bank Addressing Examples 

 2-way Bank Conflicts  8-way Bank Conflicts 

Thread 31 
Thread 30 
Thread 29 
Thread 28 

Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 31 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 31 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 9 
Bank 8 

Bank 31 

Bank 7 

Bank 2 
Bank 1 
Bank 0 x8 

x8 
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Motivating Example: Matrix Transpose 

_global__ void gpuTranspose_kernel(int rows, 

int cols, float *in, float *out) 

{ 

  int i, j; 

  i = blockIdx.x * blockDim.x + threadIdx.x; 

  j = blockIdx.y * blockDim.y + threadIdx.y; 

  out[i * rows + j] = in[j * cols + i]; 

} 

 

Either write or read is strided in gmem 

and uncoalesced 

Solution: tile in shared memory 

 

i 

j 
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Transposing with Shared Memory 

1. Read block_ij into 

shared memory 

• Reads are coalesced 

2. Transpose shared 

memory indices 

3. Write transposed 

block to global 

memory  

• Writes are coalesced 

i 

j 

Global 

Memory 

Shared 

Memory 
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Shared Memory Organization 

Organized in 32 independent banks 

Note: same as warp size. Not a coincidence. 

Every 32byte word is in the next bank, 

modulo 32. 

Optimal access: no two words from 

same bank 

Separate banks per thread 

Banks can multicast 

 

Multiple words from same bank serialize 
Called bank conflict, causes instruction replay 

C 

Bank 

Any 1:1 or multicast pattern 

C C C 

Bank Bank Bank 

C 

Bank 

C C C 

Bank Bank Bank 
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Shared Memory: Avoiding Bank Conflicts 

Example: 32x32 SMEM array 

Warp accesses a column: 

32-way bank conflicts (threads in a warp access the same bank) 

 

31 

2 1 0 

31 2 1 0 

31 2 1 0 

Bank 0 

Bank 1 

  … 

Bank 31 
2 0 1 

31 
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Shared Memory: Avoiding Bank Conflicts 

Example: 32x32 SMEM array 

Warp accesses a column: 

32-way bank conflicts (threads in a warp access the same bank) 

 

31 

2 1 0 

31 2 1 0 

31 2 1 0 

Bank 0 

Bank 1 

  … 

Bank 31 
2 0 1 

31 

Accesses along row 

produces 0 bank 

conflicts 

Accesses along 

column produces 32 

bank conflicts 

(replays) 
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Shared Memory: Avoiding Bank Conflicts 

Add a column for padding: 

32x33 SMEM array 

Warp accesses a column: 

32 different banks, no bank conflicts 

 

31 2 1 0 

31 2 1 0 

31 2 1 0 

padding 

Bank 0 

Bank 1 

  … 

Bank 31 

31 2 0 1 

Accesses along row 

produces no bank 

conflicts 

Accesses along 

column produces no 

bank conflicts 
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Shared Memory/L1 Sizing 

Shared memory and L1 use the same 64KB physical memory 

Program-configurable split: 

Fermi:  48:16, 16:48 

Kepler: 48:16, 16:48, 32:32 

CUDA API: cudaDeviceSetCacheConfig(), cudaFuncSetCacheConfig() 

Large L1 can improve performance when: 

Spilling registers (more lines in the cache -> fewer evictions) 

Large SMEM can improve performance when: 

Occupancy is limited by SMEM 
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Final Notes on Shared Memory 

Fast: high bandwidth, low latency 

Useful as user managed cache for coalescing, caching, and 

communication within a thread block 

Shared memory size / L1 cache size is API-configurable 

16k L1 / 48k Shared (default on both Fermi and Kepler) 

48k L1 / 16k Shared  

32k L1 / 32k Shared (Kepler only). 

Be careful of: 

Overuse:  Excessive allocation can hurt occupancy 

Access pattern: Lots of bank conflicts can hurt performance 
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OPTIMIZE 

Kernel Optimizations: Instruction Throughput / Control Flow 
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Exposing Sufficient Parallelism 

What SMX ultimately needs: 

Sufficient number of independent instructions 

Kepler GK110 is “wider” than Fermi or GK104; needs more parallelism 

 

Two ways to increase parallelism: 

More independent instructions (ILP) within a thread (warp) 

More concurrent threads (warps) 
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Independent Instructions: ILP vs. TLP 

SMX can leverage available Instruction-Level Parallelism more or 

less interchangeably with Thread-Level Parallelism 
 

Sometimes easier to increase ILP than to increase TLP 

E.g., # of threads may be limited by algorithm or by HW resource limits 

But if each thread has some degree of independent operations to do, 

Kepler SMX can leverage that.  (E.g., a small loop that is unrolled.) 

 

In fact, some degree of ILP is actually required to approach 

theoretical max Instructions Per Clock (IPC) 
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Control Flow 

Instructions are issued per 32 threads (warp) 

 

Divergent branches: 

Threads within a single warp take different paths 

if-else, ... 

Different execution paths within a warp are serialized 

 

Different warps can execute different code with no impact on 

performance 
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Control Flow 

Avoid diverging within a warp 

Note: some divergence is not necessarily a problem, but large 

amounts impacts execution efficiency 

 

Example with divergence:  
if (threadIdx.x > 2) {...} else {...} 

Branch granularity < warp size 

 

Example without divergence: 
if (threadIdx.x / warpSize > 2) {...} else {...} 

Branch granularity is a whole multiple of warp size 
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Control Flow  

if ( ... ) 

{ 

     // then-clause 
 

} 

else 

{ 

    // else-clause 
 

} 

 

 

in
s

tr
u

c
ti

o
n

s
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Execution within warps is coherent 
in

s
tr

u
c

ti
o

n
s

 /
 t

im
e

 

Warp  

(“vector” of threads) 

35 34 33 63 62 32 3 2 1 31 30 0 

Warp  

(“vector” of threads) 
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Execution diverges within a warp 
in

s
tr

u
c

ti
o

n
s

 /
 t

im
e

 

3 2 1 31 30 0 35 34 33 63 62 32 
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Execution diverges within a warp 
in

s
tr

u
c

ti
o

n
s

 /
 t

im
e

 

3 2 1 31 30 0 35 34 33 63 62 32 

Solution: Group threads with similar control flow 
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Runtime Math Library and Intrinsics 

Two types of runtime math library functions 

__func(): many map directly to hardware ISA 

Fast but lower accuracy (see CUDA Programming Guide for full details) 

Examples: __sinf(x), __expf(x), __powf(x, y) 

func(): compile to multiple instructions 

Slower but higher accuracy (5 ulp or less) 

Examples: sin(x), exp(x), pow(x, y) 

 

A number of additional intrinsics: 

__sincosf(), __frcp_rz(), ... 

Explicit IEEE rounding modes (rz,rn,ru,rd) 
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OPTIMIZE 

Optimizing CPU-GPU Interaction: Maximizing PCIe Throughput 
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Maximizing PCIe Throughput 

Use transfers that are of reasonable size (a few MB, at least) 

Use pinned system memory 

Overlap memcopies with useful computation 
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Pinned (non-pageable) memory 

Pinned memory enables: 

faster PCIe copies 

memcopies asynchronous with CPU 

memcopies asynchronous with GPU 

Usage 

cudaHostAlloc / cudaFreeHost 

instead of malloc / free 

cudaHostRegister / cudaHostUnregister 

pin regular memory after allocation 

Implication: 

pinned memory is essentially removed from host virtual memory 
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Asynchronicity in CUDA 

Default: 

Kernel launches are asynchronous with CPU 

Memcopies (D2H, H2D) block CPU thread 

CUDA calls are serialized by the driver 

Streams and async functions provide additional asynchronicity: 

Memcopies (D2H, H2D) asynchronous with CPU 

Ability to concurrently execute kernels and memcopies 

 

Stream: sequence of ops that execute in issue-order on GPU 

Operations from different streams may be interleaved 

Kernels and memcopies from different streams can be overlapped 
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OPTIMIZE 

Optimizing CPU-GPU Interaction: Overlapping Kernel 

Execution with Memory Copies 
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Overlap kernel and memory copy 

Requirements: 

D2H or H2D memcopy from pinned memory 

Kernel and memcopy in different, non-0 streams 

Code: 
cudaStream_t   stream1, stream2; 

cudaStreamCreate(&stream1); 

cudaStreamCreate(&stream2); 

 

cudaMemcpyAsync( dst, src, size, dir, stream1 ); 

kernel<<<grid, block, 0, stream2>>>(…); 

potentially 

overlapped 
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Call Sequencing for Optimal Overlap 

CUDA calls are dispatched in the sequence they were issued 

Kepler can concurrently execute: 

Up to 32 kernels 

Up to 2 memcopies, as long as they are in different directions (D2H, H2D) 

A call is dispatched if both are true: 

Resources are available  

Preceding calls in the same stream have completed 

Scheduling: 

Kernels are executed in the order in which they were issued 

Thread blocks for a given kernel are scheduled if all thread blocks for 

preceding kernels have been scheduled and SM resources still available 
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Hyper-Q Enables Efficient Scheduling 

Grid Management Unit selects most appropriate task from up to 

32 hardware queues (CUDA streams) 

 

Improves scheduling of concurrently executed grids 

 

Particularly interesting for MPI applications when combined with 

CUDA MPS (though not limited to MPI applications) 
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Stream Examples without Hyper-Q 

K1,M1,K2,M2: K1 

M1 

K2 

M2 

K1,K2,M1,M2: K1 

M1 

K2 

M2 

K1,M1,M2: K1 

M1 M2 

K1,M2,M1: K1 

M1 M2 

K1,M2,M2: K1 

M2 M2 

Time  

K:  Kernel 

M: Memcopy 

Integer: Stream ID 
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Stream Examples with Hyper-Q 

K1,M1,K2,M2: K1 

M1 

K2 

M2 

K1,K2,M1,M2: K1 

M1 

K2 

M2 

K1,M1,M2: K1 

M1 M2 

K1,M2,M1: K1 

M1 M2 

K1,M2,M2: K1 

M2 M2 

Time  

K:  Kernel 

M: Memcopy 

Integer: Stream ID 
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Grid Management 

Work Distributor 

32 active grids 

Stream Queue Mgmt 

C 

B 

A 

R 

Q 

P 

Z 

Y 

X 

Grid Management Unit 
Pending & Suspended Grids 

1000s of pending grids 

SMX SMX SMX SMX SM SM SM SM 

Work Distributor 

16 active grids 

Stream Queue Mgmt 

C 

B 

A 

Z 

Y 

X 

R 

Q 

P 

CUDA 

Generated 

Work 

Fermi Kepler GK110 
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Stream Dependencies Example 

void foo(void) 
{ 
    kernel_A<<<g,b,s, stream_1>>>(); 
    kernel_B<<<g,b,s, stream_1>>>(); 
    kernel_C<<<g,b,s, stream_1>>>(); 
} 
 
void bar(void) 
{ 
    kernel_P<<<g,b,s, stream_2>>>(); 
    kernel_Q<<<g,b,s, stream_2>>>(); 
    kernel_R<<<g,b,s, stream_2>>>(); 
} 

stream_1 

kernel_A 

kernel_B 

kernel_C 

stream_2 

kernel_P 

kernel_Q 

kernel_R 
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Stream Dependencies without Hyper-Q 

stream_1 

kernel_A 

kernel_B 

kernel_C 

stream_2 

kernel_P 

kernel_Q 

kernel_R 

Hardware Work Queue 

R—Q—P     C—B—A 
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Stream Dependencies with Hyper-Q 

Hyper-Q allows 32-way concurrency 

Avoids inter-stream dependencies 

 

stream_1 

kernel_A 

kernel_B 

kernel_C 

stream_2 

kernel_P 

kernel_Q 

kernel_R 

C—B—A 

R—Q—P 

Multiple Hardware Work Queues 
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Heterogeneous system: overlap work and data movement 

Kepler + CUDA 5: Hyper-Q and CPU Callbacks 

Hyper-Q Example: Building a Pipeline 

DMA 

DMA 
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Tick-Tock Matrix Multiply 

cudaMemcpyAsync(devA1, A[tile0], N, stream1); 
cudaMemcpyAsync(devB1, B[tile0], N, stream1); 
DGEMM<<<g,b,s, stream1>>>(devA1, devB1, devC1); 
 
cudaMemcpyAsync(devA2, A[tile1], N, stream2); 
cudaMemcpyAsync(devB2, B[tile1], N, stream2); 
DGEMM<<<g,b,s, stream2>>>(devTileA, devTileB, devC1); 
 
cudaMemcpyAsync(C[tile0], devC,  N, D2H, stream1); 
cudaMemcpyAsync(devA1, A[tile2], N, H2D, stream1) 
cudaMemcpyAsync(devB1, B[tile2], N, D2H, stream1) 
DGEMM<<<g,b,s, stream1>>>(devA1, devB1, devC1); 
 
cudaMemcpyAsync(C[tile1], devC,  N, D2H, stream1); 
cudaMemcpyAsync(devA1, A[tile4], N, H2D, stream1); 
cudaMemcpyAsync(devB1, B[tile4], N, D2H, stream1); 
DGEMM<<<g,b,s, stream1>>>(devA1, devB1, devC1); 
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Tick-Tock Matrix Multiply 

dA1 

stream 1 

stream 2 

memcpy 

 

B[0] 

dB1 

DGEMM 

dC_1 =dA_1 x dB_1 

dC1 dA1 dB1 

A[0] 

C[0] 
B[2] 

A[2] 

DGEMM 

dC_2 =dA_2 x dB_2 

DGEMM 

C_1 =A_1 x B_1 

B[1] 
A[1] 

dA2 dB2 

memcpy 

 

DGEMM 

C_2 =A_2 x B_2 

dC2 dA2 dB2 

C[1] 
B[3] 

A[3] 

C[2] 
B[4] 

A[4] 

dC1 dA1 dB1 

DGEMM 

C_1 =A_1 x B_1 

Copy Tile 0 Copy Tile 1 

Compute Tile 0 

Copy Tile 2 

Compute Tile 1 

Copy Tile 3 

Compute Tile 2 

Copy Tile 4 

Compute Tile 3 

GPU Memory 

CPU Memory 

memcpy 

 

memcpy 

 

memcpy 

 

memcpy 

 

dC2 dA2 dB2 

C[3] 
B[5] 

A[5] 

Copy Tile 5 

Compute Tile 4 
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Just a Higher Level of Parallelism 

Problem is decomposed into parallel 

“workers”. 

At any given time 

1 worker is using compute resources 

1 worker is using copy transfers 

Importantly: 

The PCI-E link is kept saturated with 

useful work. 

For DGEMM, compute is also saturated. 

Arch specific balancing 

Depends on CPU and GPU 

characteristics. 

 

tile computed by stream 1 

tile computed by stream 2 

Result Matrix: 
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Pipeline Code 

for (unsigned int i = 0 ; i < nIterations ; ++i) 
{ 
    // Copy data from host to device 
    cudaMemcpyAsync(d_data, h_data, cpybytes, cudaMemcpyHostToDevice, 
                    *r_streams.active()); 
 
    // Launch device kernel A 
    kernel_A<<<gdim, bdim, 0, *r_streams.active()>>>(); 
 
    // Copy data from device to host 
    cudaMemcpyAsync(h_data, d_data, cpybytes, cudaMemcpyDeviceToHost, 
                    *r_streams.active()); 
 
    // Launch host post-process 
    cudaStreamAddCallback(*r_streams.active(), cpu_callback, 
                          r_streamids.active(), 0); 
 
    // Rotate streams 
    r_streams.rotate(); r_streamids.rotate(); 
} 
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False dependencies prevent overlap 

Breadth-first launch gives overlap, requires more complex code 

Pipeline Without Hyper-Q 
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Full overlap of all engines 

Simple to program 

Pipeline With Hyper-Q 
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Hyper-Q also enables CUDA MPS 

No application modifications necessary 

Start MPS daemon using nvidia_cuda_mps_control -d 

CUDA driver detects daemon and routes GPU accesses through it 

 

Combines requests from several processes into one GPU context 

(shared virtual memory space, concurrent kernels possible, etc.) 

 

Allows for overlap of kernels with memcopies without explicit 

use of streams 
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But Hyper-Q != CUDA MPS 

One process: No MPS required! 

Automatically utilized 

One or many host threads no problem 

Just need multiple CUDA streams 

Removes false dependencies among CUDA streams that 

reduce effective concurrency on earlier GPUs 

 

Multi-process: Use CUDA MPS 

Leverages task-level parallelism across processes (e.g., MPI ranks) 

MPI is not required for MPS – it’s just the common case for HPC 
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Deploy 

We’ve removed (or reduced) some bottleneck 

Our app is now faster while remaining fully functional* 

Let’s take advantage of that! 

 

*Don’t forget to check correctness at every step 
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GPU Optimization Fundamentals 

Recap: 

Develop systematically with APOD 

Expose sufficient parallelism 

Utilize parallel processing resources efficiently 

Assess 

Parallelize 

Optimize 

Deploy 



© NVIDIA 2013 

 Online Resources 

www.udacity.com 

docs.nvidia.com developer.nvidia.com 

devtalk.nvidia.com 

www.stackoverflow.com 


