

Note: Fundamentals will apply broadly

- Example performance numbers are presented for Tesla K20X, which is based on the Kepler GK110 GPU
- Same general optimization concepts apply to other GPUs, though some parameters may be different, e.g.:
 - Number of SMs per GPU
 - Number of functional units per SM
 - Maximum number of concurrent warps per SM
 - Shared memory size per SM
 - Register file size per SM
- Developer tools from NVIDIA help you analyze the concepts without having to memorize parameters of each architecture

GPU OPTIMIZATION FUNDAMENTALS

Main Requirements for GPU Performance

- Expose sufficient parallelism
- Utilize parallel execution resources efficiently
 - Use memory system efficiently
 - Coalesce global memory accesses
 - Use shared memory where possible
 - Have coherent execution within warps of threads

APOD: A Systematic Path to Performance

- Identify hotspots (total time, number of calls)
- Understand scaling (strong and weak)

Parallelize

Applications

Libraries

Compiler Directives

Programming Languages

Optimize

Profile-driven optimization

- Tools:
 - nsight Visual Studio Edition or Eclipse Edition
 - nvvp NVIDIA Visual Profiler
 - nvprof Command-line profiling

Deploy

- Check API return values
- Run cuda-memcheck tools

- Library distribution
- Cluster management

Early gains
Subsequent changes are evolutionary

ASSESS

	Function Name	٧	Module ▼ ID	Function T	Count	7	Device V	Device Time $\sqrt{\mu s}$	Min Υ	Avg (μs)	Max γ (μs)	Context T
1	spmv_kernel_v0 <int=256></int=256>		8	3		59	35.96	457,088.169	7,700.182	7,747.257	7,809.367	1
2	jacobi_smooth_kernel_v0 <int=256></int=256>		6	4		29	1.49	18,899.315	650.599	651.701	653.224	1
3	dot_kerner_vo <int=256></int=256>		5	2		58	0.36	4,553.489	53.601	78,508	89.953	1
4	axpbypcz_kernel <int=256></int=256>		5	5		28	0.35	4,442.227	157.857	158.651	159.394	1
5	I2_norm_kernel_v0 <int=256></int=256>		7	1		30	0.30	3,793.612	124.801	126.454	128.098	1
6	axpby_kernel <int=256></int=256>		5	4		31	0.29	3,741.159	119.809	120.683	123.170	1
7	jacobi_invert_diag_kernel_v0 <int=256></int=256>		6	1		1	0.06	783.209	783.209	783.209	783.209	1
8	reduce_kernel <int=256></int=256>		5	1		58	0.03	366.597	5.984	6.321	7.168	1
9	reduce_I2_norm_kernel <int=256></int=256>		7	2		30	0.02	291.490	9.504	9.716	10.560	1

- Profile the code, find the hotspot(s)
- Focus your attention where it will give the most benefit

- We've found a hotspot to work on!
 - What percent of our total time does this represent?
 - How much can we improve it? What is the "speed of light"?
 - How much will this improve our overall performance?

- Let's investigate...
 - Strong scaling and Amdahl's Law
 - Weak scaling and Gustafson's Law
 - Expected perf limiters: Bandwidth? Computation? Latency?

Assess: Understanding Scaling

Strong Scaling

- A measure of how, for fixed overall problem size, the time to solution decreases as more processors are added to a system
- Linear strong scaling: speedup achieved is equal to number of processors used
- Amdahl's Law:

$$S = \frac{1}{(1-P) + \frac{P}{N}} \approx \frac{1}{(1-P)}$$

Assess: Understanding Scaling

Weak Scaling

- A measure of how time to solution changes as more processors are added with fixed problem size per processor
- Linear weak scaling: overall problem size increases as num. of processors increases, but execution time remains constant

Gustafson's Law:

$$S = N + (1 - P)(1 - N)$$

Assess: Applying Strong and Weak Scaling

- Understanding which type of scaling is most applicable is an important part of estimating speedup:
 - Sometimes problem size will remain constant
 - Other times problem size will grow to fill the available processors
- Apply either Amdahl's or Gustafson's Law to determine an upper bound for the speedup

Assess: Applying Strong Scaling

- Recall that in this case we are wanting to optimize an existing kernel with a pre-determined workload
- That's strong scaling, so Amdahl's Law will determine the maximum speedup

Assess: Applying Strong Scaling

Say, for example, our kernel is ~93% of total time:

- Speedup $S = \frac{1}{(1-P) + \frac{P}{S_p}}$ (S_P = speedup in parallel part)
- In the limit when S_P is huge, S will approach $\frac{1}{1-0.93} \approx 14.3 \times 10^{-1}$
- In practice, it will be less than that depending on the S_P achieved
- Getting S_P to be high is the goal of optimizing, of course

Assess: Speed of Light

- What's the limiting factor?
 - Memory bandwidth?
 - Compute throughput?
 - Latency?
 - Not sure?
 - Get a rough estimate by counting bytes per instruction, compare it to "balanced" peak ratio $\frac{GBytes/sec}{Ginsns/sec}$
 - Profiler will help you determine this

Assess: Limiting Factor

- Comparing bytes per instr. will give you a guess as to whether you're likely to be bandwidth-bound or instruction-bound
- Comparing actual achieved GB/s vs. theory and achieved
 Ginstr/s vs. theory will give you an idea of how well you're doing
 - If both are low, then you're probably latency-bound and need to expose more (concurrent) parallelism

Assess: Limiting Factor

Assess: Speed of Light

- What's the limiting factor?
 - Memory bandwidth? Compute throughput? Latency?
- Consider SpMV: intuitively expect it to be bandwidth-limited
 - Say we discover we're getting only ~38% of peak bandwidth
 - If we aim to get this up to ~65% of peak, that's $1.7 \times$ for this kernel
 - 1.7× for this kernel translates into 1.6× overall due to Amdahl:

$$S = \frac{1}{(1-0.93) + \frac{0.93}{1.7}} \approx 1.6 \times$$

Assess: Limiting Factor

- For our example SpMV kernel, our first discovery was that we're latency-limited, not bandwidth, since utilization was so low
- This tells us our first "optimization" step actually needs to be related how we expose (memory-level) parallelism

PARALLELIZE

PARALLELIZE

Computation

Parallelize

Applications

Libraries

Compiler Directives

Programming Languages

Pick the best tool for the job

Parallelize: e.g., with GPU Accelerated Libraries

Matrix Algebra on GPU and Multicore

GPU Accelerated Linear Algebra

Vector Signal Image Processing

NVIDIA cuRAND

Parallelize: e.g., with Thrust

- Similar to C++ STL
- High-level interface
 - Enhances developer productivity
 - Enables performance portability between GPUs and multicore CPUs
- Flexible
 - Backends for CUDA, OpenMP, TBB
 - Extensible and customizable
 - Integrates with existing software
 - Open source


```
generate 32M random numbers on host
thrust::host_vector<int> h_vec(32 << 20);</pre>
thrust::generate(h_vec.begin(),
                 h_vec.end(),
                 rand):
// transfer data to device (GPU)
thrust::device_vector<int> d_vec = h_vec;
// sort data on device
thrust::sort(d_vec.begin(), d_vec.end());
// transfer data back to host
thrust::copy(d_vec.begin(),
             d_vec.end(),
             h_vec.begin());
```

Parallelize: e.g., with OpenACC

Fortran or C code

Directives-based approach

Compiler parallelizes code

Works on many-core GPUs & multicore CPUs

Parallelize: e.g., with CUDA C

Standard C Code

```
void saxpy_serial(int n,
                  float a,
                  float *x,
                  float *y)
  for (int i = 0; i < n; ++i)
    y[i] = a*x[i] + y[i];
// Perform SAXPY on 1M elements
saxpy_serial(4096*256, 2.0, x, y);
```

CUDA C Code

```
_global__
void saxpy_parallel(int n,
                     float a,
                     float *x,
                     float *y)
  int i = blockIdx.x * blockDim.x +
          threadIdx.x;
  if (i < n) y[i] = a*x[i] + y[i];
// Perform SAXPY on 1M elements
saxpy_parallel <<< 4096, 256>>> (n, 2.0, x, y);
```

Parallelism Needed

- GPU is a parallel machine
 - Lots of arithmetic pipelines
 - Multiple memory banks
- To get good performance, your code must expose sufficient parallelism for 2 reasons:
 - To actually give work to all the pipelines
 - To hide latency of the pipelines
- Rough rule of thumb for Tesla K20X:
 - You want to have 14K or more threads running concurrently

Case Study: Matrix Transpose

```
void transpose(float in[][], float out[][], int N)
  for(int j=0; j < N; j++)
    for (int i=0; i < N; i++)
      out[j][i] = in[i][j];
```

An Initial CUDA Version

```
__global__ void transpose(float in[], float out[], int N)
{
   for(int j=0; j < N; j++)
      for(int i=0; i < N; i++)
      out[i*N+j] = in[j*N+i];
}

float in[N*N], out[N*N];
...
transpose<<<<1,1>>>>(in, out, N);
```

+ Quickly implemented

- Performance weak

⇒Need to expose parallelism!

An Initial CUDA Version

```
__global__ void transpose(float in[], float out[], int N)
{
   for(int j=0; j < N; j++)
      for(int i=0; i < N; i++)
      out[i*N+j] = in[j*N+i];
}

float in[N*N], out[N*N];
...
transpose<<<<1,1>>>>(in, out, N);
```

+ Quickly implemented

- Performance weak

⇒Need to expose parallelism!

Parallelize across matrix elements

Process elements independently

```
global transpose(float in[], float out[])
 int tid = threadIdx.x;
 int bid = blockIdx.x;
 out[tid*N+bid] = in[bid*N+tid];
float in[], out[];
transpose <<</n>
(in, out);
```


PARALLELIZE

Data Transfer

Asynchronicity = Overlap = Parallelism

Heterogeneous system: overlap work and data movement

Asynchronicity

- This is the kind of case we would be concerned about
 - Found the top kernel, but the GPU is mostly idle that is our bottleneck
 - Need to overlap CPU/GPU computation and PCle transfers

Parallelize: Achieve Asynchronicity

What we want to see is maximum overlap of all engines

OPTIMIZE

Main Requirements for GPU Performance

- Expose sufficient parallelism
- Utilize parallel execution resources efficiently
 - Use memory system efficiently
 - Coalesce global memory accesses
 - Use shared memory where possible
 - Have coherent execution within warps of threads

GPU Optimization Fundamentals

- Find ways to parallelize sequential code
- Adjust kernel launch configuration to maximize device utilization
- Ensure global memory accesses are coalesced
- Minimize redundant accesses to global memory
- Avoid different execution paths within the same warp
- Minimize data transfers between the host and the device

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/

GPU Optimization Fundamentals

- Find ways to parallelize sequential code
- Kernel optimizations
 - Launch configuration
 - Global memory throughput
 - Shared memory access
 - Instruction throughput / control flow
- Optimization of CPU-GPU interaction
 - Maximizing PCle throughput
 - Overlapping kernel execution with memory copies

OPTIMIZE

Kernel Optimizations: Kernel Launch Configuration

Kernel Launch Configuration

- A kernel is a function that runs on the GPU
- A kernel is launched as a grid of blocks of threads
- Launch configuration is the number of blocks and number of threads per block, expressed in CUDA with the <<< >>> notation:

```
mykernel<<<ble>docks_per_grid, threads_per_block>>> (...);
```

- What values should we pick for these?
 - Need enough total threads to process entire input
 - Need enough threads to keep the GPU busy
 - Selection of block size is an optimization step involving warp occupancy

High-level view of GPU Architecture

- Several Streaming Multiprocessors
 - E.g., Kepler GK110 has up to 15 SMs
- L2 Cache shared among SMs
- Multiple channels to DRAM

Kepler Streaming Multiprocessor (SMX)

Per SMX:

- 192 SP CUDA Cores
- 64 DP CUDA Cores
- 4 warp schedulers
 - Up to 2048 concurrent threads
 - One or two instructions issued per scheduler per clock from a single warp
- Register file (256KB)
- Shared memory (48KB)

CUDA Execution Model

- Thread: Sequential execution unit
 - All threads execute same sequential program
 - Threads execute in parallel
- Threads Block: a group of threads
 - Executes on a single Streaming Multiprocessor (SM)
 - Threads within a block can cooperate
 - Light-weight synchronization
 - Data exchange
- Grid: a collection of thread blocks
 - Thread blocks of a grid execute across multiple SMs
 - Thread blocks do not synchronize with each other
 - Communication between blocks is expensive

Execution Model

Software

Hardware

Threads are executed by scalar CUDA Cores

Thread blocks are executed on multiprocessors

Thread blocks do not migrate

Several concurrent thread blocks can reside on one multiprocessor - limited by multiprocessor resources (shared memory and register file)

A kernel is launched as a grid of thread blocks

Launch Configuration: General Guidelines

How many blocks should we use?

- 1,000 or more thread blocks is best
 - Rule of thumb: enough blocks to fill the GPU at least 10s of times over
 - Makes your code ready for several generations of future GPUs

Launch Configuration: General Guidelines

How many threads per block should we choose?

- The really short answer: 128, 256, or 512 are often good choices
- The slightly longer answer:
 - Pick a size that suits the problem well
 - Multiples of 32 threads are best
 - Pick a number of threads per block (and a number of blocks) that is sufficient to keep the SM busy

Warps

A thread block consists of warps of 32 threads

A warp is executed physically in parallel on some multiprocessor.

Threads of a warp issue instructions in lockstep (as with SIMD)

Hardware Levels of Parallelism

Single Instruction, Multiple Data In-core parallelism

Simultaneous Multithreading Cross-core, Cross-socket Single Computer OpenMP, pthreads

SMT

Multiple "computers" Tightly-coupled Supercomputing apps

SIMD

MPI

SIMT

Single Instruction, Multiple Threads In-processor parallelism Many threads on many cores

These form a continuum. Best performance is achieved with a mix.

Low Latency or High Throughput?

CPU

- Optimized for low-latency access to cached data sets
- Control logic for out-of-order and speculative execution

GPU

- Optimized for data-parallel, throughput computation
- Architecture tolerant of memory latency
- More transistors dedicated to computation

Occupancy

- Need enough concurrent warps per SM to hide latencies:
 - Instruction latencies
 - Memory access latencies
- Hardware resources determine number of warps that fit per SM

Occupancy = N_{actual} / N_{max}

Start	588.755 ms
End	588.808 ms
Duration	53.344 µs
Grid Size	[64,64,1]
Block Size	[16,8,1]
Registers/Thread	21
Shared Memory/Block	1.062 KB
Memory	
Global Load Efficiency	100%
Global Store Efficiency	100%
Local Memory Overhead	0%
DRAM Utilization	92.7% (169.74 GB/s)
Instruction	
Branch Divergence Overhead	0%
Total Replay Overhead	17.6%
Shared Memory Replay Overhead	0%
Global Memory Replay Overhead	17.6%
Global Cache Replay Overhead	0%
Local Eache Replay Overhead	0%
Occupancy	
Achieved	91.3%
Theoretical	100%
Theoretical	100%
Achieved	91.3%
Occupancy	© NVIDIA
Local Cache Replay Overnead	0% © NVIDIA

Low Latency or High Throughput?

- CPU architecture must minimize latency within each thread
- GPU architecture hides latency with computation from other (warps of) threads

Latency Hiding

- Instruction latencies:
 - Roughly 10-20 cycles for arithmetic operations
 - DRAM accesses have higher latencies (400-800 cycles)
- Instruction Level Parallelism (ILP)
 - Independent instructions between two dependent ones
 - ILP depends on the code, done by the compiler
- Switching to a different warp
 - If a warp must stall for N cycles due to dependencies, having N other warps with eligible instructions keeps the SM going
 - Switching among concurrently resident warps has no overhead
 - State (registers, shared memory) is partitioned, not stored/restored

Occupancy

- Occupancy: number of concurrent warps per SM, expressed as:
 - Absolute number of warps of threads that fit concurrently (e.g., 1..64), or
 - Ratio of warps that fit concurrently to architectural maximum (0..100%)
- Number of warps that fit determined by resource availability:
 - Threads per thread block
 - Registers per thread
 - Shared memory per thread block

Kepler SM resources:

- 64K 32-bit registers
- Up to 48 KB of shared memory
- Up to 2048 concurrent threads
- Up to 16 concurrent thread blocks

Occupancy and Performance

- Note that 100% occupancy isn't needed to reach maximum performance
 - Once the "needed" occupancy (enough warps to switch among to cover latencies) is reached, further increases won't improve performance
- Level of occupancy needed depends on the code
 - More independent work per thread -> less occupancy is needed
 - Memory-bound codes tend to need more occupancy
 - Higher latency than for arithmetic, need more work to hide it

Thread Block Size and Occupancy

- Thread block size is a multiple of warp size (32)
 - Even if you request fewer threads, hardware rounds up
- Thread blocks can be too small
 - Kepler SM can run up to 16 thread blocks concurrently
 - SM can reach the block count limit before reaching good occupancy
 - E.g.: 1-warp blocks = 16 warps/SM on Kepler (25% occ probably not enough)
- Thread blocks can be too big
 - Enough SM resources for more threads, but not enough for a whole block
 - A thread block isn't started until resources are available for all of its threads

Thread Block Sizing

SM resources:

- Registers
- Shared memory

CUDA Occupancy Calculator

Analyze effect of resource consumption on occupancy

Occupancy Analysis in NVIDIA Visual Profiler

 Occupancy here is limited by grid size and number of threads per block

OPTIMIZE

Kernel Optimizations: Global Memory Throughput

CUDA Memory Architecture

Optimizing Memory Throughput

- Goal: utilize all available memory bandwidth
- Little's Law:
 # bytes in flight = latency * bandwidth

- ⇒ Increase parallelism (bytes in flight) (or)
- ⇒ Reduce latency (time between requests)

Illustration: Little's Law for Escalators

- Say the parameters of our escalator are:
 - 1 person fits on each step
 - Step arrives every 2 secs (bandwidth=0.5 persons/s)
 - 20 steps tall (*latency*=40 seconds)
- 1 person in flight: 0.025 persons/s achieved
- To saturate bandwidth:
 - Need 1 person arriving every 2 s
 - Means we'll need 20 persons in flight
- The idea: Bandwidth × Latency
 - It takes latency time units for the first person to arrive
 - We need bandwidth persons to get on the escalator every time unit

Memory-Level Parallelism = Bandwidth

In order to saturate memory bandwidth, SM must have enough independent memory requests in flight concurrently

Memory-Level Parallelism: Requests in flight

- Achieved Kepler memory throughput
 - Shown as a function of number of concurrent requests per SM with 128-byte lines

Requests per Thread and Performance

- Experiment: vary size of accesses by threads of a warp, check performance
 - Memcopy kernel: each warp has 2 concurrent requests (one write and the read following it)

Accesses by a warp:

4B words: 1 line

8B words: 2 lines

16B words: 4 lines

To achieve same throughput at lower occupancy or with smaller words, need more independent requests per warp

Optimizing Access Concurrency

- Ways to increase concurrent accesses:
 - Increase occupancy (run more warps concurrently)
 - Adjust block dimensions to maximize occupancy
 - If occupancy is limited by registers per thread, try to reduce register count (-maxrregcount option or __launch_bounds__)
 - Modify code to process several elements per thread
 - Doubling elements per thread doubles independent accesses per thread

OPTIMIZE

Kernel Optimizations: Global Memory Access Coalescing

Mechanics of a Memory Access

- Memory operations are issued per warp
 - Just like all other instructions
- Operation:
 - Threads in a warp provide memory addresses
 - Hardware determines which lines/segments are needed, fetches them

Memory Access Efficiency Analysis

- Two perspectives on the throughput:
 - Application's point of view: count only bytes requested by application
 - HW point of view: count all bytes moved by hardware
- The two views can be different:
 - Memory is accessed at 32 byte granularity
 - With a scattered or offset pattern, the application doesn't use all the bytes the hardware actually transferred
 - Broadcast: the same small transaction serves many threads in a warp

- Scenario:
 - Warp requests 32 aligned, consecutive 4-byte words
- Addresses fall within 4 segments
 - Warp needs 128 bytes
 - 128 bytes move across the bus
 - Bus utilization: 100%

- Scenario:
 - Warp requests 32 aligned, permuted 4-byte words
- Addresses fall within 4 segments
 - Warp needs 128 bytes
 - 128 bytes move across the bus
 - Bus utilization: 100%

- Scenario:
 - Warp requests 32 misaligned, consecutive 4-byte words
- Addresses fall within at most 5 segments
 - Warp needs 128 bytes
 - At most 160 bytes move across the bus
 - Bus utilization: at least 80%
 - Some misaligned patterns will fall within 4 segments, so 100% utilization

- Scenario:
 - All threads in a warp request the same 4-byte word
- Addresses fall within a single segment
 - Warp needs 4 bytes
 - 32 bytes move across the bus
 - Bus utilization: 12.5%

- Scenario:
 - Warp requests 32 scattered 4-byte words
- Addresses fall within N segments
 - Warp needs 128 bytes
 - N*32 bytes move across the bus
 - Bus utilization: 128 / (N*32)


```
void saxpy(int n, float a, float * x, float
    * y)
{
   for(int i=0; i<n; i++)
    {
      y[base +i] += a * x[base+ i];
   }
}</pre>
```

- Divide the work equally among T threads
- Each thread is responsible for computing one contiguous 'region' of the arrays
- This is good for pthreads

thread 2

```
global void saxpy1(int n, float a, float
 * x, float * y)
int workPerThread = 1 + n/blockDim.x;
int base = threadIdx.x * workPerThread;
for(int i=0; i<workPerThread; i++)</pre>
  if(base + i < n)
    y[base +i] += a * x[base+ i];
```

thread 1

thread 0

- Divide the work equally among T threads
- Each thread is responsible for computing one contiguous 'region' of the arrays
- This is good for pthreads

thread 2

```
global void saxpy1(int n, float a, float
 * x, float * y)
int workPerThread = 1 + n/blockDim.x;
int base = threadIdx.x * workPerThread;
for(int i=0; i<workPerThread; i++)</pre>
  if(base + i < n)
    y[base +i] += a * x[base+i];
```

thread 1

thread 0

- In SIMT, 32 threads of a warp issue the x[base+i] instruction simultaneously.
 - Each thread has different value of base
- if workPerThread > 1, this becomes a strided load

thread 3 ... thread 31

```
global void saxpy1(int n, float a, float
                                            In SIMT, 32 threads of a warp
 * x, float * y)
                                            issue the x[base+i] instruction
int workPerThread = 1 + n/blockDim.x;
                                            simultaneously.
int base = threadIdx.x * workPerThread;
                                                 Each thread has different value
                                                 of base
for(int i=0; i<workPerThread; i++)</pre>
                                          if workPerThread > 1, this
 if(base + i < n)
                                             becomes a strided load
   y[base +i] += a * x[base+i];
                            thread 2
                                        thread 3
                                                                 thread 31
   thread 0
               thread 1
```

A Better Way to Parallelize SAXPY

```
global void saxpy2(int n, float a, float
 * x, float * y)
int id;
int loopCount = 0;
while (id < n)
  id = loopCount*blockDim.x + threadIdx.x;
  y[id] += a * x[id];
  loopCount++;
      loopcount = 0
                              loopcount = 1
```

- Divide work up so that each pass through the loop, the thread block computes one 'contiguous region' of the array.
- Achieves memory coalescing

A Better Way to Parallelize SAXPY

```
global void saxpy2(int n, float a, float
 * x, float * y)
int id;
int loopCount = 0;
while (id < n)
  id = loopCount*blockDim.x + threadIdx.x;
  y[id] += a * x[id];
  loopCount++;
      loopcount = 0
                              loopcount = 1
```

- The area of X addressed by each warp is contiguous in global memory.
- The number of global memory transactions is minimized.
- This effect translates to loads and stores of y also.

loopcount=k

Structures of Non-Native Size

Say we are reading a 12-byte structure per thread

```
struct Position
  float x, y, z;
};
 global void kernel( Position *data, ...)
  int idx = blockIdx.x * blockDim.x + threadIdx.x;
  Position temp = data[idx];
```

Structure of Non-Native Size

- Compiler converts temp = data[idx] into 3 loads:
 - Each loads 4 bytes
 - Can't do an 8 and a 4 byte load: 12 bytes per element means that every other element wouldn't align the 8-byte load on 8-byte boundary
- Addresses per warp for each of the loads:
 - Successive threads read 4 bytes at 12-byte stride

First Load Instruction

Second Load Instruction

Third Load Instruction

Performance and Solutions

- Because of the address pattern, we end up moving 3x more bytes than application requests
 - We waste a lot of bandwidth, leaving performance on the table
- Potential solutions:
 - Change data layout from array of structures to structure of arrays
 - In this case: 3 separate arrays of floats
 - The most reliable approach (also ideal for both CPUs and GPUs)
 - Use loads via read-only cache
 - As long as lines survive in the cache, performance will be nearly optimal
 - Stage loads via shared memory

Global Memory Access Patterns

SoA vs AoS:

Good: point.x[i]

Not so good: point[i].x

Strided array access:

 \sim OK: x[i] = a[i+1] - a[i]

Slower: x[i] = a[64*i] - a[i]

Random array access:

Slower: a[rand(i)]

Summary: GMEM Optimization

- Strive for perfect address coalescing per warp
 - Align starting address (may require padding)
 - A warp will ideally access within a contiguous region
 - Avoid scattered address patterns or patterns with large strides between threads
- Analyze and optimize address patterns:
 - Use profiling tools (included with CUDA toolkit download)
 - Compare the transactions per request to the ideal ratio
 - Choose appropriate data layout (prefer SoA)
 - If needed, try read-only loads, staging accesses via SMEM

A note about caches

- L1 and L2 caches
 - Ignore in software design
 - Thousands of concurrent threads – cache blocking difficult at best
- Read-only Data Cache
 - Shared with texture pipeline
 - Useful for uncoalesced reads
 - Handled by compiler when const __restrict__ is used, or use __ldg() primitive

Blocking for GPU Memory Caches

- Short answer: DON'T
- GPU caches are not intended for the same use as CPU caches
 - Smaller size (especially per thread), so not aimed at temporal reuse
 - Intended to smooth out some access patterns, help with spilled registers, etc.
- Usually not worth trying to cache-block like you would on CPU
 - 100s to 1,000s of run-time scheduled threads competing for the cache
 - If it is possible to block for L1 then it's possible block for SMEM
 - Same size
 - Same or higher bandwidth
 - Guaranteed locality: hw will not evict behind your back

Read-only Data Cache

- Go through the read-only cache
 - Not coherent with writes
 - Thus, addresses must not be written by the same kernel
- Two ways to enable:
 - Decorating pointer arguments as hints to compiler:
 - Pointer of interest: const __restrict__
 - All other pointer arguments: __restrict__
 - Conveys to compiler that no aliasing will occur
 - Using __ldg() intrinsic
 - Requires no pointer decoration

Read-only Data Cache

- Go through the read-only cache
 - Not coherent with writes
 - Thus, addresses must not be written by the same kernel
- Two ways to enable:
 - Decorating pointer argumeη
 - Pointer of interest: const
 - All other pointer argument
 - Conveys to compiler th
 - Using __ldg() intrinsic
 - Requires no pointer decor

Read-only Data Cache

- Go through the read-only cache
 - Not coherent with writes
 - Thus, addresses must not be written by the same kernel
- Two ways to enable:
 - Decorating pointer argumeη
 - Pointer of interest: const
 - All other pointer argument
 - Conveys to compiler the
 - Using __ldg() intrinsic
 - Requires no pointer decor

Texture and Constant Memory

- Read-only
- Data resides in global memory
- Read via special-purpose caches

Texture

- Separate cache
- Dedicated texture cache hardware provides:
 - Out-of-bounds index handling
 - clamp or wrap-around
 - Optional interpolation
 - Think: using fp indices for arrays
 - Linear, bilinear, trilinear
 - Interpolation weights are 9-bit
 - Optional format conversion
 - {char, short, int} -> float
 - All of these are "free"

Examples of Texture Object Indexing

Integer indices fall between elements Optional interpolation:

Weights are determined by coordinate distance

Index Wrap:

Index Clamp:

OPTIMIZE

Kernel Optimizations: Shared Memory Accesses

Shared Memory

- Fast, on-chip memory
- Accessible by all threads within a thread block
 - Common allocation for entire thread block
- Variety of uses:
 - Software managed cache (e.g., tiled DGEMM)
 - Global memory coalescing (e.g., transpose)
 - Communication within a thread block (e.g., FFT, reductions)
- Limited Resource
 - Use of shared memory affects occupancy

Shared Memory Organization

- Organized in 32 independent banks
- Optimal access: no two words from same bank
 - Separate banks per thread
 - Banks can multicast
- Multiple words from same bank serialize

Bank Addressing Examples

Bank Addressing Examples

Motivating Example: Matrix Transpose

```
_global__ void gpuTranspose_kernel(int rows,
int cols, float *in, float *out)
{
  int i, j;
  i = blockIdx.x * blockDim.x + threadIdx.x;
  j = blockIdx.y * blockDim.y + threadIdx.y;
  out[i * rows + j] = in[j * cols + i];
}
```

- Either write or read is strided in gmem and uncoalesced
- Solution: tile in shared memory

Transposing with Shared Memory

- 1. Read block_ij into shared memory
 - Reads are coalesced
- 2. Transpose shared memory indices
- 3. Write transposed block to global memory
 - Writes are coalesced

Shared Memory Organization

- Organized in 32 independent banks
 - Note: same as warp size. Not a coincidence.
- Every 32byte word is in the next bank, modulo 32.
- Optimal access: no two words from same bank
 - Separate banks per thread
 - Banks can multicast
- Multiple words from same bank serialize
 - Called bank conflict, causes instruction replay

Shared Memory: Avoiding Bank Conflicts

- Example: 32x32 SMEM array
- Warp accesses a column:
 - 32-way bank conflicts (threads in a warp access the same bank)

Bank 0
Bank 1
...
Bank 31

Shared Memory: Avoiding Bank Conflicts

- Example: 32x32 SMEM array
- Warp accesses a column:
 - 32-way bank conflicts (threads in a warp access the same bank)

Bank 0 Bank 1

Bank 31

Accesses along row produces 0 bank conflicts

Accesses along column produces 32 bank conflicts (replays)

Shared Memory: Avoiding Bank Conflicts

- Add a column for padding:
 - 32x33 SMEM array
- Warp accesses a column:
 - 32 different banks, no bank conflicts

Bank 0
Bank 1

•••

Bank 31

Accesses along row produces no bank conflicts

Accesses along column produces no bank conflicts

Shared Memory/L1 Sizing

- Shared memory and L1 use the same 64KB physical memory
 - Program-configurable split:
 - Fermi: 48:16, 16:48
 - Kepler: 48:16, 16:48, 32:32
 - CUDA API: cudaDeviceSetCacheConfig(), cudaFuncSetCacheConfig()
- Large L1 can improve performance when:
 - Spilling registers (more lines in the cache -> fewer evictions)
- Large SMEM can improve performance when:
 - Occupancy is limited by SMEM

Final Notes on Shared Memory

- Fast: high bandwidth, low latency
- Useful as user managed cache for coalescing, caching, and communication within a thread block
- Shared memory size / L1 cache size is API-configurable
 - 16k L1 / 48k Shared (default on both Fermi and Kepler)
 - 48k L1 / 16k Shared
 - 32k L1 / 32k Shared (Kepler only).
- Be careful of:
 - Overuse: Excessive allocation can hurt occupancy
 - Access pattern: Lots of bank conflicts can hurt performance

OPTIMIZE

Kernel Optimizations: Instruction Throughput / Control Flow

Exposing Sufficient Parallelism

- What SMX ultimately needs:
 - Sufficient number of independent instructions
 - Kepler GK110 is "wider" than Fermi or GK104; needs more parallelism
- Two ways to increase parallelism:
 - More independent instructions (ILP) within a thread (warp)
 - More concurrent threads (warps)

Independent Instructions: ILP vs. TLP

- SMX can leverage available Instruction-Level Parallelism more or less interchangeably with Thread-Level Parallelism
- Sometimes easier to increase ILP than to increase TLP
 - E.g., # of threads may be limited by algorithm or by HW resource limits
 - But if each thread has some degree of independent operations to do, Kepler SMX can leverage that. (E.g., a small loop that is unrolled.)
- In fact, some degree of ILP is actually required to approach theoretical max Instructions Per Clock (IPC)

Control Flow

- Instructions are issued per 32 threads (warp)
- Divergent branches:
 - Threads within a single warp take different paths
 - o if-else, ...
 - Different execution paths within a warp are serialized
- Different warps can execute different code with no impact on performance

Control Flow

- Avoid diverging within a warp
 - Note: some divergence is not necessarily a problem, but large amounts impacts execution efficiency
- Example with divergence:
 - o if (threadIdx.x > 2) {...} else {...}
 - Branch granularity < warp size</p>
- Example without divergence:
 - o if (threadIdx.x / warpSize > 2) {...} else {...}
 - Branch granularity is a whole multiple of warp size

Control Flow

instructions

```
if ( ... )
   // then-clause
else
  // else-clause
```


Execution diverges within a warp

Execution diverges within a warp

Runtime Math Library and Intrinsics

- Two types of runtime math library functions
 - func(): many map directly to hardware ISA
 - Fast but lower accuracy (see CUDA Programming Guide for full details)
 - Examples: __sinf(x), __expf(x), __powf(x, y)
 - func(): compile to multiple instructions
 - Slower but higher accuracy (5 ulp or less)
 - Examples: sin(x), exp(x), pow(x, y)
- A number of additional intrinsics:
 - __sincosf(), __frcp_rz(), ...
 - Explicit IEEE rounding modes (rz,rn,ru,rd)

OPTIMIZE

Optimizing CPU-GPU Interaction: Maximizing PCIe Throughput

Maximizing PCle Throughput

- Use transfers that are of reasonable size (a few MB, at least)
- Use pinned system memory
- Overlap memcopies with useful computation

Pinned (non-pageable) memory

- Pinned memory enables:
 - faster PCle copies
 - memcopies asynchronous with CPU
 - memcopies asynchronous with GPU
- Usage
 - cudaHostAlloc/cudaFreeHost
 - instead of malloc / free
 - cudaHostRegister/cudaHostUnregister
 - pin regular memory after allocation
- Implication:
 - pinned memory is essentially removed from host virtual memory

Asynchronicity in CUDA

- Default:
 - Kernel launches are asynchronous with CPU
 - Memcopies (D2H, H2D) block CPU thread
 - CUDA calls are serialized by the driver
- Streams and async functions provide additional asynchronicity:
 - Memcopies (D2H, H2D) asynchronous with CPU
 - Ability to concurrently execute kernels and memcopies
- Stream: sequence of ops that execute in issue-order on GPU
 - Operations from different streams may be interleaved
 - Kernels and memcopies from different streams can be overlapped

OPTIMIZE

Optimizing CPU-GPU Interaction: Overlapping Kernel Execution with Memory Copies

Overlap kernel and memory copy

- Requirements:
 - D2H or H2D memcopy from pinned memory
 - Kernel and memcopy in different, non-0 streams

Code:

```
cudaStream_t stream1, stream2;
cudaStreamCreate(&stream1);
cudaStreamCreate(&stream2);

cudaMemcpyAsync(dst, src, size, dir, stream1);
kernel<<<qri>grid, block, 0, stream2>>>(...);

potentially
overlapped
```

Call Sequencing for Optimal Overlap

- CUDA calls are dispatched in the sequence they were issued
- Kepler can concurrently execute:
 - Up to 32 kernels
 - Up to 2 memcopies, as long as they are in different directions (D2H, H2D)
- A call is dispatched if both are true:
 - Resources are available
 - Preceding calls in the same stream have completed
- Scheduling:
 - Kernels are executed in the order in which they were issued
 - Thread blocks for a given kernel are scheduled if all thread blocks for preceding kernels have been scheduled and SM resources still available

Hyper-Q Enables Efficient Scheduling

- Grid Management Unit selects most appropriate task from up to 32 hardware queues (CUDA streams)
- Improves scheduling of concurrently executed grids
- Particularly interesting for MPI applications when combined with CUDA MPS (though not limited to MPI applications)

Stream Examples without Hyper-Q

Stream Examples with Hyper-Q

Grid Management

Stream Dependencies Example

```
void foo(void)
    kernel A<<<g,b,s, stream 1>>>();
    kernel_B<<<g,b,s, stream_1>>>();
    kernel C<<<g,b,s, stream_1>>>();
void bar(void)
{
    kernel_P<<<g,b,s, stream_2>>>();
    kernel_Q<<<g,b,s, stream_2>>>();
    kernel_R<<<g,b,s, stream_2>>>();
```


stream_1

kernel_A

kernel_B

kernel C

stream_2

kernel_P

kernel_Q

kernel R

Stream Dependencies without Hyper-Q

stream_1

kernel_A

kernel_B

kernel_C

R—Q—P C—B—A

Hardware Work Queue

stream_2

kernel_P

kernel_Q

kernel_R

Stream Dependencies with Hyper-Q

stream_1

kernel_A

kernel_B

kernel C

stream_2

kernel_P

kernel_Q

kernel_R

C—B—A

- Hyper-Q allows 32-way concurrency
- Avoids inter-stream dependencies

Hyper-Q Example: Building a Pipeline

- Meterogeneous system: overlap work and data movement
- Kepler + CUDA 5: Hyper-Q and CPU Callbacks

Tick-Tock Matrix Multiply

```
cudaMemcpyAsync(devA1, A[tile0], N, stream1);
cudaMemcpyAsync(devB1, B[tile0], N, stream1);
DGEMM<<<g,b,s, stream1>>>(devA1, devB1, devC1);
cudaMemcpyAsync(devA2, A[tile1], N, stream2);
cudaMemcpyAsync(devB2, B[tile1], N, stream2);
DGEMM<<<g,b,s, stream2>>>(devTileA, devTileB, devC1);
cudaMemcpyAsync(C[tile0], devC, N, D2H, stream1);
cudaMemcpyAsync(devA1, A[tile2], N, H2D, stream1)
cudaMemcpyAsync(devB1, B[tile2], N, D2H, stream1)
DGEMM<<<g,b,s, stream1>>>(devA1, devB1, devC1);
cudaMemcpyAsync(C[tile1], devC, N, D2H, stream1);
cudaMemcpyAsync(devA1, A[tile4], N, H2D, stream1);
cudaMemcpyAsync(devB1, B[tile4], N, D2H, stream1);
DGEMM<<<g,b,s, stream1>>>(devA1, devB1, devC1);
```

Tick-Tock Matrix Multiply

	Compute Tile 0	Compute Tile 1	Compute Tile 2	Compute Tile 3	Compute Tile 4
Copy Tile 0	Copy Tile 1	Copy Tile 2	Copy Tile 3	Copy Tile 4	Copy Tile 5

Just a Higher Level of Parallelism

- Problem is decomposed into parallel "workers".
- At any given time
 - 1 worker is using compute resources
 - 1 worker is using copy transfers
- Importantly:
 - The PCI-E link is kept saturated with useful work.
 - For DGEMM, compute is also saturated.
- Arch specific balancing
 - Depends on CPU and GPU characteristics.

tile computed by stream 1 tile computed by stream 2

Pipeline Code

```
for (unsigned int i = 0 ; i < nIterations ; ++i)</pre>
   // Copy data from host to device
    cudaMemcpyAsync(d_data, h_data, cpybytes, cudaMemcpyHostToDevice,
                    *r streams.active());
   // Launch device kernel A
    kernel_A<<<gdim, bdim, 0, *r_streams.active()>>>();
   // Copy data from device to host
    cudaMemcpyAsync(h_data, d_data, cpybytes, cudaMemcpyDeviceToHost,
                    *r streams.active());
   // Launch host post-process
    cudaStreamAddCallback(*r_streams.active(), cpu_callback,
                          r streamids.active(), 0);
   // Rotate streams
    r streams.rotate(); r streamids.rotate();
```

Pipeline Without Hyper-Q

- False dependencies prevent overlap
- Breadth-first launch gives overlap, requires more complex code

Pipeline With Hyper-Q

- Full overlap of all engines
- Simple to program

Hyper-Q also enables CUDA MPS

- No application modifications necessary
 - Start MPS daemon using nvidia_cuda_mps_control -d
 - CUDA driver detects daemon and routes GPU accesses through it
- Combines requests from several processes into one GPU context (shared virtual memory space, concurrent kernels possible, etc.)
- Allows for overlap of kernels with memcopies without explicit use of streams

But Hyper-Q != CUDA MPS

- One process: No MPS required!
 - Automatically utilized
 - One or many host threads no problem
 - Just need multiple CUDA streams
 - Removes false dependencies among CUDA streams that reduce effective concurrency on earlier GPUs
- Multi-process: Use CUDA MPS
 - Leverages task-level parallelism across processes (e.g., MPI ranks)
 - MPI is not required for MPS it's just the common case for HPC

Deploy

- We've removed (or reduced) some bottleneck
- Our app is now faster while remaining fully functional*
- Let's take advantage of that!
- *Don't forget to check correctness at every step

GPU Optimization Fundamentals

Recap:

- Develop systematically with APOD
- Expose sufficient parallelism
- Utilize parallel processing resources efficiently

Online Resources

www.udacity.com

devtalk.nvidia.com

docs.nvidia.com